
AD-A251 671

NAVAL POSTGRADUATE SCHOOL
Monterey, California

JUN1 1992

THESIS

INTERACTIVE NAVAL GUNFIRE SUPPORT
TRAINING

by

Warren Anthony Mazanec

March 1992

Thesis Advisor: Michael P. Bailey

Approved for public release; distribution is unlimited.

92-15714

92 C

UNCLASSIFIED

SEGURI IY CLASSIFICAION OF- THIS PAGE

REPORT DOCUMENTATION PAGE Ok .O 00F18

la. H ,P..HI E.UHIIY L FAIt-IA 1IOlb. HEIIGIIMARKINC&5

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY a DISTRIBU I ION /AVAILABILUTY OF REPORT

Approved for public release; distribution is
21). DECLAS51PICA I ION/UOWN(FIAUINU SQHEDULI unlimited.

4. PIRORMING OHGANIZATION HhPOHI NUMBIEH(S) a MONITORING ORFGANIZAIION HEPOH1 NUMBER(S)

6a. NAME OF PERtFOHMINU OHGANIzAT ION 61). O-I-CE SYMBOL 7a. NAME 0F MONITORING ORGANIZATIONI ("'t'ab~e) Naval Postgraduate School
Naval Postgraduate School OR

6c. ADDRESS (Gy, .515e, anoZIP o1e) 7b. ADDRES (Giy, State, and ZIP Gode)

Monterey, CA 93943 Monterey, CA 93943-5006
8a NAMEOF 1-UNDING/SPONSORING I 8b. OFFICE SYMBOL 9. PROCUREMENT INSIRUMEN- IDENTIFICATION NUMBER

ORGANIZATIONI (IfaApable)
Naval Postgraduate School_

8C. ADDRESS (City, Stale, andZIP Code) 10. SOURCE OF FUNDING NUMBERS

Monterey, CA 93943 ELEGME N O JC TASK I WORK UNIT
ELEMENT NO. INO. NO. ACCESSION NO.

11. TITLE (Include Secunty Classshcabon)
Interactive Naval Gunfire Support Training

12. PERSONAL AUTHOR(S)

Warren Anthony Mazanec
13a. YPE O RLPH I 1 IME OVERE 14. ATE F REPRT (ea,monff dy)1.PGCON

Master's thesis FROM TO March, 1992 165
16. SUPPLEMENTARY NOTATION The views expressed in this paper are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.
17. CAbA IDI CLS. 18. SUBJECT TERMS (Coninue on reverse it necessary and ientry by block number)

FIELD I GROUP I SUB-GROUP Object-oriented programming; MODSIM; NGFS; Naval

I I Gunfire Support; Men-In-The-Loop Simulation; Training
19. ABSTRACT (Contnue on reverse if necessay and idenn*, by block number)

The goal of this thesis is to develop an interactive computer system for Man-In-The-Loop Naval Gunfire
Support (NGFS) training. In attaining this goal, it provides the end user with the full range of exercises a ship
sees at the NGFS ranges. The emphasis is on coordinated teamwork to facilitate a seamless transition from the
training (non-firing) environment to live-round firings. The benefits are three-fold. First, a more cohesive
primary team will be developed. Second, the declining DoD budget demands that fewer training rounds are
expended and the training and maintenance budget is reduced. Finally, a more efficient use of range time will
result from better shipboard teamwork.

The NGFS training model encompasses the five testable scenarios from COMNAVSURFLANTINST
3570.2D (Gunsmoke) and incorporates the appropriate mix of point, area, and counter-battery fire. A built-in
umpiring capability impartially monitors time-line events and award the appropriate points and penalties. A
training report is generated to document the exercise and compare results to historical performance. A statistical
analysis of improvements by milestones in mission vs. the norm is done to emphasize areas in critical need for
improvement.

2D. DISTHIBU1ON/AVAILABLUTY OF ABSTRACT I 21. ABSTRACT SECURITY CLASSICIATION

lyl UNCLASSIFIEDUNUMITED [] SAME AS RPT. [J DTIC USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) I 2c. OFFICE SYMBOL
M. Bailey I (408) 646-2085I OR/Ba
DD Form 1473, JUN 86 Preious ediions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

S/N 0102-LF-014-6603 UNCLASSIFIED

Approved for public release; distribution is unlimited

Interactive Naval Gunfire Support Training

by

Warren Anthony Mazanec
Lieutenant, United States Navy

BS, United States Naval Academy, 1984

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

From the

NAVAL POSTGRADUATE SCHOOL
March 1992

Author: &4Warren AnthonyVNhzanec

Approved by:
1 c P. Bailey, Thesis Advisor

Wa nsSeondReader

Peter Purdue, Chairman
Department of Operations Research

ii

ABSTRACT

The goal of this thesis is to develop an interactive computer system for

Man-In-The-Loop Naval Gunfire Support (NGFS) training. In attaining this

goal, it provides the end user with the full range of exercises a ship sees at the

NGFS ranges. The emphasis is on coordinated teamwork to facilitate a

seamless transition from the training (non-firing) environment to live-

round firings. The benefits are three-fold. First, a more cohesive primary

team will be developed. Second, the declining DoD budget demands that

fewer training rounds are expended and that the training and maintenance

budget be reduced. Finally, a more efficient use of range time will result from

better shipboard teamwork.

The NGFS training model encompasses the five testable scenarios from

COMNAVSURFLANTINST 3570.2D (Gunsmoke) and incorporates the

appropriate mix of point, area, and counter-battery fire. A built-in umpiring

capability impartially monitors time-line events and awards the appropriate

points and penalties. A training report is generated to document the exercise

and compare results to historical performance. A statistical analysis of

improvements by milestones in mission vs. the norm is done to emphasize

areas in critical need for improvement.

Acoession For
NTT "

Ur

m5P't '/- . ______ .. .,

ga--

_1S~I I I I I I II I I II I II
)

TABLE OF CONTENTS

L INTRODUCTION ... 1

A . G O A L .. 1

B. PROSPECTIVE USE ... 2

C. METHODOLOGY .. 2

D . SC O PE ... 3

IL MEETING THE TRAINING CHALLENGE IN A REALISTIC,
MEANINGFUL MANNER .. 4

A. ALLOCATING THE SCARCEST RESOURCE OF ALL: TIME 4

B. BETTER TRAINING: IT IS NEEDED NOW 5

C. OVERCOMING INERTIA: WINNING THE TRAINING WAR ... 6

D. SCOPE OF THE PROGRAM ... 8

III. DEVELOPMENT AND METHODOLOGY BEHIND THE MODEL 11

A. DESIGN CONSIDERATIONS ... 11

1. Ship-Spotter Interactions ... 11

2. Graphical User Interface Requirements 12

3. Selecting an Appropriate Developmental Platform 14

B. DETAILS OF THE GRAPHIC USER'S INTERFACE 15

1. Pull-D ow n M enus ... 15

2. D ialog Boxes .. 16

C. MODELING THE PHYSICAL SYSTEM ... 22

1. The Mercator Projection Problem .. 23

2. Advance and Transfer during a Maneuver 25

3. Tim e of Flight ... 26

IV. ANALYSIS AND FEEDBACK OF CREW PERFORMANCE 28

A. COMMUNICATION ERROR RATE .. 29

B. PASS/FAIL TIMED EVOLUTIONS .. 29

C. SLIDING-SCALE TIMED EVOLUTIONS ... 29

iv

D. EQUIPMENT CASUALTIES .. 30

E. TRAINING REPORTS ... 30

V. CONCLUSIONS AND RECOMMENDATIONS 31

A. CONCLUSIONS .. 31

B. RECOMMENDATIONS FOR FURTHER RESEARCH 32

1. Fleet Feedback ... 32

2. Voice Recognition Technology ... 33

3. Incorporate Simvideo ... 33

4. Implement Spreadsheet Primitive .. 33

APPENDIX A. USER'S MANUAL .. 34

APPENDIX B. SAMPLE SHIP'S DATA FILE .. 49

APPENDIX C. SAMPLE TARGET LIST ... 52

APPENDIX D. PROGRAM CODE ... 54

REFERENCES ... 156

BIBLIOGRAPHY ... 157

INITIAL DISTRIBUTION LIST ... 158

V

L INTRODUCTION

With the increased availability of desk top computers, specialized ship,

team and individual training can now leave high-cost, dedicated training

facilities and become integrated into ship-board training. Still in use today are

the canned scripts that guide ship's company through their drills. Computer

systems are now being used to replace handwritten scripts. However, drill

monitors are still required to intervene and make the appropriate script

available. Emerging technologies such as voice recognition and interaction

are available, user-friendly, inexpensive, and on desktop computers. When

properly integrated with an interactive training computer program, training

can approach the degree of realism once only associated with shore-based

facilities and high cost equipment.

A. GOAL

The goal of this thesis is to develop an interactive computer system for

Man-In-The-Loop Naval Gunfire Support (NGFS) training. In attaining this

goal, it provides the end user with the full range of exercises a ship sees at the

NGFS ranges [Ref. 1]. The emphasis is on coordinated teamwork to facilitate a

seamless transition from the training (non-firing) environment to live-

round firings. The benefits are three-fold. First, a more cohesive primary

team will be developed. The primary team consists of the individuals the

ship uses during the graded exercise; while a secondary team is similarly

trained but not as proficient. Second, the declining DoD budget demands that

fewer training rounds are expended and that the training and maintenance

budget be reduced. Finally, a more efficient use of range time will result from

better shipboard teamwork.

The NGFS training model encompasses the five testable scenarios from

COMNAVSURFLANTINST 3570.2D (Gunsmoke) and incorporates the

appropriate mix of point, area, and counter-battery fire[Ref. 1]. A built-in

umpiring capability impartially monitors time-line events and awards the

appropriate points and penalties. A training report is generated to document

the exercise and compare results to historical performance. A statistical

analysis of improvements by milestones in mission vs. the norm is done to

emphasize areas in critical need for improvement.

B. PROSPECTIVE USE

A training system of this nature is designed for use on board to increase

primary team coordination and upgrade the level of proficiency of the

secondary teams. Strong secondary teams ease the transitions caused by losses

in primary personnel from transfers, injury and fatigue. The real utility

comes from being able to run scenarios that test three distinct levels of

training; ship-wide training, the NGFS team -lone and on the lowest level,

individual practice. Ship-wide training is the primary purpose, but if a

scenario can be run to exercise small teams or individuals, then specific areas

requiring training can be targeted without impacting the entire ship.

C METHODOLOGY

Each of the five exercises are broken down into their component parts to

allow the identification of common routines. Intra-ship and ship-to-shore

communications are examined to generate the scripts used in each of the

exercises. Correctness of the communications between each possible spotter

2

type and the ship is stressed. A top-level design serves to integrate the scripts

and physical models in a modular, object-oriented programming approach.

Upon model validation with pre-existing training scripts, perturbations are

used to test inter-team coordination. Deviations include, but are not limited

to spotter bias, equipment failure, ammunition reliability and accuracy.

A modular, object oriented programming approach is used to develop the

models. The programming language MODSIM II is used as it is transferrable

to almost any desktop platform encountered in the fleet today without code

modifications. An object-oriented language was chosen to facilitate the

integration of the many facets associated with platform movement,

ammunition accuracy and equipment reliability. [Ref. 2]

D. SCOPE

This study demonstrates the feasibility and desirability of using a desktop

Man-In-The-Loop simulation for weapons system training. The training

program will be made available to all surface ships so that crews can train

themselves in a somewhat realistic environment while in-port or at sea.

This study consists of the construction of:
" the engagement simulation system

" exercise scoring mechanism

" exercise assessment report generator

User acceptance of the system was explored with Surface Warfare Officers

found at NPS.

Funding and exercise data for this research effort have been provided by

the Major Caliber Ammunition Group at Naval Surface Weapons Center,

Crane Division, Crane, Indiana.

3

II. MEETING THE TRAINING CHALLENGE IN A REALISTIC,

MEANINGFUL MANNER

A. ALLOCATING THE SCARCEST RESOURCE OF ALL: TIME

"Time is Money" Benjamin Franklin is credited with saying. The Naval

Officer's corollary to that could very well be "Time is Everything." Indeed,

one of the biggest challenges facing the sea-going Officer is the allocation of

scarce resources, the most important of which is himself. Not only is he faced

with the challenge of working at least an eight hour day on watch, but he

must also schedule time for administrative tasks, planning, training and

overseeing maintenance; never mind eating and sleeping. It is a busy world

where the use of pre-existing paperwork is a must because there is little time

for the creation of quality, original work. If it exists, and it works, there are

more pressing needs that require attention.

It is difficult enough to meet the established training requirements, let

alone make the training both realistic and meaningful. The complexities of

coordinating a large ship-wide training exercise are enormous. Every detail

must be considered to include providing the drill monitors with detailed

scripts that specify timing, indications that the crew can see, and most

important of all, specifying the point at which the monitor should intervene

for safety. After the exercise is completed, aggregating data collected by the

monitors and analyzing the results is a time-consuming task. To accomplish

this well once is a challenge, but to develop a series of permutations on the

basic problem is overwhelming. The problem is magnified considerably

when a dynamic situation is being simulated. Ship movement, ranges and

4

bearings, and communications with outside agencies are beyond the scope of

most afloat commands.

In the Gunsmoke publication, there are four canned exercise navigation

tracks in the appendices. The interactions between the ship and spotter are

documented in a sample exercise but there are no instructions or guidelines

for preparing a successful training exercise on a ship. [Ref. 1] The opponent

here is not a pesky Third World insurgent, but the pre-existing pall that hangs

over training. Once that one scenario has been beaten to death, training

becomes stale and extracting anything of value is impossible. The way to

surmount this problem is to reduce the burden of creating new scenarios, add

a little random uncertainty into the exercise inputs and put all involved on

their toes to be ready for anything within the possible realm of the exercise.

One of the often-heard complaints by Naval Gunfire Range Observers is

the lack of teamwork exhibited by the ships conducting qualification firings.

It is required that formal NGFS training is conducted within 90 days of a

qualification exercise by all specified members of the team. After that, a ship

is responsible for maintaining proficiency. Neither the money nor time

underway is available to put to sea and expend rounds to smooth out

teamwork problems. Range time is valuable and large-caliber ammunition

precious. Shipboard training coordinators are faced with a difficult

challenge-maximizing training effectiveness with declining assets.

B. BETTER TRAINING: IT IS NEEDED NOW

It does not take much for an NGFS team to flounder. Recently, a ship of

the Atlantic Fleet, after having completed all other requirements for a

successful qualification shoot, failed to qualify because of one person. The

5

ship's Gunfire Liaison Officer (GLO) broke his foot on the passage to the

range. The Executive Officer stepped in to fill the spot. The Executive Officer

had been a GLO once, and was the only person available with sufficient

experience to assume the role. The XO's experience was dated, but with no

onboard training available for a workup, he made the best attempt he could.

After two full days on the range, only six rounds had been expended with the

last round going directly over the Observation Post. Needless to say, the

qualification shoot was terminated immediately. A lot of money had been

spent keeping personnel at the range for two days. From any Atlantic Fleet

homeport, the trip down to the range is long. Expensive rounds were wasted

and most importantly, lives had been needlessly endangered. It is not likely

any amount of training could have salvaged perfec scores, but it would have

either pointed out correctable weaknesses or that the exercise could not be

successfully completed and thereby cancelled.

C. OVERCOMING INERTIA: WINNING THE TRAINING WAR

"Nothing on earth consumes a man more quickly than the passion of

resentment." This was written by Friedrich Nietzche in Ecce Homo over a

hundred years ago, but very aptly describes the attitude about training. Many

times deficiencies in training are perceived to be from a lack of emphasis

rather than the true problem; the inability to conduct realistic training. These

deficiencies are often manifested in training policies established by external

agencies that do little more than increase the training burden by adding more

required topics or man-hours of training. This situation, training for the sake

of training, is common and found at all levels throughout the Navy.

6

The NGFS Cylon Spotter is designed as a tool for producing better quality

training. It is a stand-alone, unbiased evaluator of Naval Gunfire Support

training. The Cylon Spotter simulates the world external to the ship

providing communications from the spotter, generating simulated shot fall

and providing ship positioning information. It is designed to test all or

portions of the NGFS team. To illustrate the capabilities of the Cylon Spotter,

consider a ship underway from Newport, RI on weekly operations, as it passes

close aboard to Block Island. An NGFS exercise has been planned. The chart

shows several likely point and area targets, as well as structures for radar

ranges. The ship informs the simulated shore spotter that it is on station and

ready for call for fire. For several hours the ship and crew are put through

their paces, and shortly after the drill's conclusion a written report detailing

the ship's performance is available for an on the spot critique. This was an in-

house evolution. There was no range time to schedule, no expensive

training team, no equipment to hook up and a minimum number of people

to supervise the event. This is the essence of the Cylon Spotter.

In creating the Cylon Spotter, reducing the burden of creating realistic,

meaningful scenarios was a major goal. Evaluation of the NGFS team can be

conducted on three distinct levels. The highest level of training is a ship-

wide exercise with built-in casualties based on historical Mean Time Between

Failure (MTBF) data. The next level is internal to the ship, involving the

NGFS team. Finally, the program can be run to conduct individual element

training on specific tasks with an emphasis on proficiency through repetition.

Timing and recording events is done by the system. This minimizes the

monitoring team required, and automates most of the data analysis.

7

A major drawback to current interactive training, like the RESA system,

is that all of the commands to the system are typed in. This is slow and

frustrating. It takes time to become proficient enough to operate the system

without a manual full of commands. A small-scope system like the NGFS

Cylon Spotter, with a limited number of commands from the user to the

system, can be implemented with the commands grouped by logical headings

in pull-down style menus. Actual interaction consists of mouse clicks and

use of the <RETURN> key. Inputs are prompted by the appearance of dialog

boxes on the screen tailored to the specific information required by the

system. In order for the exercise coordinator to more closely monitor the

evolution, audible prompts call attention to required input and incoming

Spotter message traffic. No manual is needed, just read, pick a command and

click; the program takes care of the rest.

D. SCOPE OF THE PROGRAM

"On station and ready for call for fire." These words begin every Naval

gunfire exercise. The spotter replies with the fire mission and the ship

readies the fire control system to deliver a shore bombardment. The impact

area is checked for proper trajectory, time of flight is reported to the beach.

The ship waits on the order to fire. The Cylon Spotter responds with "Fire,

Over." The rounds are spotted and the ship is guided onto the target. When

the rounds are centered to cause maximum damage, the spotter directs the

ship to "Fire for effect." Accurate, high-volume large caliber rounds saturate

the target area. At the completion of the bombardment, the spotter signifies

another successful mission with "End of mission, target destroyed, out."

Currently, this interaction occurs only when there are assets available to

8

provide spotting services. These assets are either airborn spotters, ground-

based forward observers or the Observation Posts at the designated Naval

Gunfire Ranges. The Cylon Spotter replaces all of these assets. Training with

the Cylon Spotter is self-contained, and the environmental interactions

become intra-ship. Training is now an on demand evolution; whenever and

where-ever it is desired, it can happen.

It is not possible nor is it desirable to model every aspect of the shore

bombardment process. Projectile trajectories are modeled on historical

impact dispersion distributions. The phenomena of gunbarrel heating and

sea state, among others, are ignored, as the overall goal is improving

teamwork and shipboard coordination. The dialog between ship and spotter

covers the basic components of shore bombardment and includes Call For

Fire, point and area targets, coordinated illumination and the appearance of

counterbattery fire.

The geographic display editor provided has been designed for the input of

actual geographic locations. This facilitates the use of targets of opportunity.

An increase in area awareness can be expected at either an exercise or actual

bombardment site by familiarizing the team with landmarks and likely

targets. The integrated simulation graphics available with the MODSIM

language eases the programming requirements for providing real-time

position information as opposed to canned exercises. [Ref. 31

The program provides objective scoring of an exercise in accordance with

the established guidelines [Ref. 1]. The elimination of umpire bias and the

burden of manually timing events allows the exercise supervisor more time

to monitor the evolution instead of becoming bogged down with data

collection. Supervisor comments on the exercise are permitted to be entered

9

in real time and those comments along with the events occurring during the

exercise are available in a ship's log style narrative.

10

IL DEVELOPMENT AND METHODOLOGY BEHIND THE MODEL

Developing the model was a sequential process. The identification of the

five testable exercise scenarios was necessary to bound the model in terms of

capabilities. A careful analysis of each scenario yielded the basic elements

comprising each scenario. This resulted in a composite list of the required

Ship-Spotter interactions and specified the data displays the Fire Control

party needs. The model pursued two divergent courses at this point. First,

the exercise building blocks needed to be completely scripted. A specialized

manager was then developed to link the elemental blocks in a logical order

according to the exercise specifications. In parallel, the requirements of the

Graphical Users Interface, GUI, were detailed. These included the ability for

real-time dynamic updates for a geographic display and the dynamic

monitoring and display of key values essential to the Fire Control party.

Finally, the development environment was chosen so that all of these

requirements could be built in a modular, and separately testable manner.

A. DESIGN CONSIDERATIONS

1. Ship-Spotter Interactions

The interaction between the ship and the spotter are detailed in the

five graded scenarios located in the appendices of Reference 1. They range

from the straightforward; point, area and coordinated illumination fires to

the complex; testing the ship's ability to deliver sustained, high volume D-

Day shore bombardments. The building blocks from which any exercise can

be constructed are as follows:

* Call For Fire

~11

* Point Fire

" Area Fire

* Coordinated Illumination

* Counterbattery Fire

In order to make the program conducive to rapid start-up at the

commencement of the exercise, an exercise manager was created to allow

editing and planning prior to the drill period. At the start of an exercise,

specifying which script for the program to execute causes the right sequence of

events to occur. Thus, the highly detailed planning and careful verification

of an exercise scenario is accomplished at a time convenient for the user. The

options available for the exercise planner include the U.S. Navy's five basic

qualification scenarios, and the ability to customize specific scenarios tailored

to the training needs of the ship. For variation and flexibility, any

exercise/geographic map combination is allowed. This serves one additional

purpose: the navigation team becomes an optional element of the exercise. In

this manner, the process of fixing ship's position by the normal geographic

and electronic means can replace the model's automatic navigation

algorithm.

2. Graphical User Interface Requirements

Flexibility in the ability to train requires that the GUI be sufficient to

permit training with none of the usual ship's sensors available. In this sense,

the GUI provides enough information to the trainees to allow a successful

exercise to be run from the classroom. The geographic display in Figure 1 is

showing ship's position and orientation relative to the geographic area of

operations and is provided for visual validation purposes. As the ship icon

12

10 Ion Spotter Geographical Display

ID Data Display

Figue k. GeogapCD lan Dat IlAys

LHTITL13

rotates with course changes, the intended path can be inspected for

correctness. An area 25 nautical miles square is chosen as the default world

size of the Geographic Display window. This allows a distance of 25,000 yards

from a boundary to the center of the window; more than adequate for five-

inch batteries which are normally fired within 15,000 yards of the target. In

addition, this allows sea room for maneuvering away from the window's

periphery. This feature, though not required by the ship or the spotter, is

essential to provide a mental image of where the ship is physically

positioned.

Once the ship is initially positioned for the start of the exercise,

constant position feedback is required as inpu: the fire control system

and for use on the plots. A separate window is dedicated for displaying

longitude and latitude in one of two formats: degrees, minutes, seconds or

degrees, minutes and fractions of minutes, depending on the type of chart in

use. Time is marked from the beginning of the exercise as opposed to being

set to clock time. When the exercise needs to be temporarily suspended for

regrouping the fire control team, time can be re-commenced without being

fragmented. Finally, ship's parameters are displayed to indicate speed, course

and rudder angle. Data output is implemented with digital displays for

accuracy.

3. Selecting an Appropriate Developmental Platform

MODSIM II with the integrated SIMGRAPHICS II was selected for its

unique capabilities. First, it provides an object-oriented structure that allows

the program to be constructed in a distinct and logical modular form. Of

major importance is the ability to separately compile and independently test

each module. Aberrant behavior of a module is easier to identify and correct

14

without confounding the model with secondary and tertiary affects. The

integrated graphics and the creation of graphical objects simplifies the

modeling of ship dynamics. Changes in motion are handled by a library of

pre-defined methods, and the digital displays are directed to automatically

update to reflect changes in an object's descriptive fields. [Ref. 2]

A standard for desktop computing presently does not exist for the

U.S. Navy. The ability to port code to other operating systems without major

software rewriting is considered important. MODSIM provides a standard

front-end language that can compile into stand-alone applications on most

operating systems.

B. DETAILS OF THE GRAPHIC USER'S INTERFACE

The Graphic User's Interface is designed to provide the trainee with

logical prompts to reduce the amount of keyboard interaction that is required

during the execution of an exercise.

1. Pull-Down Menus

Pull-down menus are the command interface for user to system

commands. They are grouped funrtionally to place similar command choices

in the same pull-down block. Figure 2 shows all pull-down menu headings

and sub-headings available under each heading.

To prevent improper selection of sub-headings, they are coded with a

flag that when set makes them unselectable. The excluded sub-heading item

appears dimmed to the user to indicate that the item is not available for

selection. For example, until START is selected under the COMMEX heading

in Figure 2, the remaining items, STOP, PAUSE and RESUME are unavailable

for selection. The last major heading selected changes appearance from black

15

text on a white background to white text on a black background as a reminder.

As each sub-heading is selected, an appropriate dialog box appears to prompt

the user for further required actions.

COMMEH PARAMETERS GEO Display

START Ship's Parameters ZOOM IN
STOP ENTER FIH CANCEL ZOOM
PAUSE Set and Drift NUDGE
RESUME Muzzle Velocity

Figure 2. Menu Bar Headings and Sub-Headings

The three menu categories relate to program execution, changing the

operating characteristics of the ship and altering the geographic display

window. Under the COMMEX heading, program execution begins with

START and is terminated by STOP. PAUSE suspends execution and a dialog

box appears prompting the user for the cause of the suspension. This is

included in the exercise summary. RESUME cancels the pause command

and simulation time is once again advanced.

2. Dialog Boxes

Dialog boxes are graphical objects created in a graphical editor and

attached to a window. Each dialog box is comprised of several sub-elements.

Value boxes are for inputting numeric data, either integer or real. Check

boxes accept boolean input, that is, the item is checked and evaluated as TRUE

or FALSE, not checked. Text boxes display descriptive text helpful to

successful use of the dialog boxes. The last type of sub-element is a button.

16

Most dialog boxes request input of some type. Accompanying the request for

information are two buttons labeled Change and Cancel. Both are

terminating buttons. Terminating buttons cause the dialog box to erase when

a mouse click is sensed on that button. Change causes the new data entered

into the value and check boxes to be accepted. Selecting Cancel invalidates

any new data that has been entered and provides a way to exit a dialog box

that has been inadvertently selected by the user.

a. Ship Parameters

The Ship's Parameter dialog box, shown in Figure 3, displays

information pertaining to ship's course, speed and rudder angle. This dialog

box is the result of selecting the sub-heading of the same name in the

Parameter's menu. Changing course and speed invokes a method of the ship

which causes the rate of change from the old to the new value to follow

values contained in the ship's data file.

U Sip's aetr II r: iPo itoH:

Course I135. I Lat 4121.5I
Speed F15. I Lon 7153.421
Rudder 0.0

Time 105.2
t hange {Cancel

eENTER
CANCEL

Figure 3. Dialog Boxes For Ship's Parameters

Selecting the the ENTER FIX sub-heading results in the second

dialog box shown in Figure 3. All fixes of ship's position are time late. A

method of dead reckoning using current ship's course and speed to determine

17

actual position is included. Entering the time of the fix in HHMM.SS format

causes the ship's position to update to current problem time by applying a

displacement based on the direction vector multiplied by the elapsed time

since the fix.

b. Physical World Parameters

The parameters of the simulated physical world are not constant.

The largest effect the physical world imposes on a ship is the phenomena of

set and drift. The dialog box for set and drift is shown in Figure 4. Based on

the input parameters of speed and direction, an offset is applied to the ship's

position every time it is updated. As current conditions change throughout

the evolution, the data in the dialog box must be updated by the user.

Direction 10.01 , D

Speed 10.0 K

" Change Cancel D

Figure 4. Set and Drift Dialog Box

c. Time of Flight

To accurately calculate projectile time of flight, muzzle velocity

of the projectile must be known. As shown in Figure 5, the Muzzle Velocity

dialog box has two buttons for selection. The buttons set time of flight

velocities to either normal or reduced charge. This is followed by a prompt to

ask the user if the previously recorded velocity is correct. There is also input

for cases when normal trajectories are not being used. A check box is present

18

for cases where the target is in defilade and higher than normal trajectory

paths are used.

®@ Normal Charge

o Reduced Charge

* High Angle Trajectory

0 High Angle Trajectory

(OK A CRNCEL

Figure 5. Muzzle Velocity Dialog Box

c. Zoom

The ZOOM menu causes the area of the geographic display

window to shrink. This feature is provided for two reasons. First, it allows

the accuracy of a geographic feature to be examined on a more precise scale.

Secondly, the default window dimensions do not permit viewing of target

locations. When the 4:1 zoom option is selected (Figure 6), a flag is set to

make the target locations visible. The target the ship is currently engaging

blinks. Canceling the zoom feature returns the window to its default

dimensions of 50,000 yards by 50,000 yards.

The two zoom dialog boxes appear sequentially. The first

selection sets the level of magnification. The Zoom Centering allows the user

the option of zooming centered on a specific location, such as target location

or zooming centered on the last mouse click position. If a zoom operation is

scheduled to occur and a boundary of the geographiL display is violated, the

19

S Cylon Spotter Geographical Dispiay

2:1 ZOOM] Zoom By LAT/LON)
4:1 ZOOM (Zoom By MouseClick

Cancel Cancel

Figure 6. Geographic Display and Dialog Boxes For Zoom

zoom window shifts to coincide with the boundary of the geographic

window. To prevent unnecessary entering and exiting of the zoom option

20

because the positioning of the zoom window is incorrect, a nudge option is

provided. The Nudge box, shown in Figure 7, allows the the zoomed portion

to shift in the four cardinal directions. The total distance of each nudge is

based on the zoom scale selected. Additionally, a fine nudge option is

available to move the zoom window half of the normal distance. Until the

DONE button is selected, the Nudge box re-draws itself after every nudge

operation.

U I

LEFT DONE RIGHT

(DOWN)

.COURSE rI--FINE

Figure 7. Nudge Dialog Box

d. Additional Dialog Boxes

There are several dialog boxes that are not associated with any

menu item. The most important is the Supervisor's Comment dialog box.

This box is for the supervisor to input additional comments regarding the

current exercise. Documenting erroneous ship-to-spotter communications is

accomplished in this fashion. A button in the dialog box is dedicated for this

purpose.

21

C. MODELING THE PHYSICAL SYSTEM

As stated previously, precise modeling of the physical attributes of the

ship is not the purpose of this model. However, certain characteristics could

not be overlooked. Most important are the rates at which a ship accelerates

and decelerates and changes heading for a given rudder/speed combination.

The level of precision that is required by the model is determined by two

criteria, both of which are necessary for grading an exercise. The grading

criteria are displayed graphically in Figure 8. First, the ship is required to

inform the spotter of changes in projectile time of flight of five seconds or

greater. The lateral velocity of a round is approximately 100 yards per second.

It is assumed that measuring the accuracy of projectile time of flights by the

observation team is to the nearest second. Based on the lateral velocity, this is

equivalent to an error in range of 100 yards. The second criteria is a change in

the imaginary line drawn between the ship and the target, known as the Gun

Target Line, by five degrees of arc or more. Normally, shore bombardment

operations occur at ranges in excess of 6,000 yards. At 6,000 yards, the length

of the arc subtended by a five degree angle is approximately 525 yards.

Measuring angles to the nearest whole degree is assumed to be the level of

accuracy that can be obtained on a chart. At this close range, the

corresponding error is 105 yards. The goal for positional accuracy is ± 100

yards. The ship in the model has been maneuvered extensively and the

model's ship positions were determined to be within ±100 yards of the hand

plotted positions. It is important to note that after a course change, a ship is

required by NGFS doctrine to fix its position as soon as steady on the new

22

course. Errors introduced by the model during a maneuver are reset to zero

after the new fix is entered.

Muzzle Velocity. V

Lateral Velocity. V-cos())

Range = 6000 yards

-- 1Ar -1Ar = 105 ". ..yards...

Gun Thrget Line

Figure 8. Bounding Model Accuracy

1. The Mercator Projection Problem

There are two types of charts currently in use utilizing Mercator and

Gnomonic projections respectively. For large-scale charts (small area), the

Mercator projection is standard [Ref. 4].

Two arcs of longitude are not equidistant from the equator to a pole.

A method was developed to account for the contraction between two arcs of

longitude as a pole is approached. The Mercator projection is such that two

arcs of longitude are assumed to be parallel. This in itself is not critical, but as

chart locations are shifted from ones close to the equator to ones off coastal

United States, the same displacement measured in yards increases per degree

of longitude displaced. The physical world represented in the simulation is

measured only in constant units of displacement. A filter has been put in

place so that when positions are entered into the system for any specified

latitude, it is translated into the appropriate units of yards of displacement

23

from a reference point. This filter must also work in reverse, so that when

ship's position is displayed, it is shown in correct latitude and longitude.

To model the physical world so this problem is accounted for by the

program would be an error, and a case of over-engineering. Instead, a simple

measurement of a constant displacement is taken and reported in degrees of

longitude. From this, a scale value is calculated and applied to longitude

values going into the model world, as well as a position from the model to a

corresponding longitude.

At the equator one minute of latitude equals one minute of

longitude which is equal to one nautical mile or two thousand yards. From

this, five minutes of longitude is equal to 0.0833 degrees of longitude.

10
5' longitude x = 0.08330 longitude60'

The procedure uses this fact and treats the latitude and longitude of

the lower left hand corner of the chart, chosen and specified by the user, as the

reference point. It is from this position that all other latitude/longitude

combinations are displaced. A distance of 10,000 yards is measured from the

reference longitude. This is the scaling longitude. A ratio from these two

longitudes is the Scale Factor. The Scale Factor is equal to 1.0 at the equator

and increases as a pole is approached. Equation (2) adjusts the displacement

to units of longitude along the equator, then converts longitude to yards.

Simplifying equation (2) yields equation (3) which is representative of the

code implementation. This approach was chosen because of its simplicity and

requires only that the user supply the latitude and longitude of the reference

corner and the scaling longitude.

24

(1) Scale Factor= reference longitude - scaling longitude
0.0833

(2) distance in yards reference longitude - longitude of object 10,000
Scale Factor 0.0833

substituting in for Scale Factor yields:

(3) distance in yards = reference longitude - longitude of object X 10,000
reference longitude - scaling longitude

2. Advance and Transfer during a Maneuver

For each ship, tables of advance and transfer are calculated during sea

trials.

Advance is the distance gained in the direction of the original course
until the ship steadies on her final course. Transfer is the distance
gained at right angles to the direction of the original course until the
ship steadies on her final course. [Ref. 4:p. 221]

The values contained in these tables represent combinations of ship speeds

and rudder angles measured in yards of advance and transfer for different

turn angles. This is acceptable for hand-plotting ship's position, but presents a

formidable programming challenge. The hand-plotting method is discrete;

the start of the turn is plotted, then advance and transfer is applied to

determine the ship's position where the turn ends. The Cylon Spotter model

employs continuous dynamic updating and the discrete position offset

method will not work. Instead, measuring the rate of turn in degrees per

second over a specified arc is easily integrated into the continuous updating of

the model's ship. Three speeds of five, fifteen and twenty-five knots, each the

mean value of a ten knot speed range, are used. The same division for

rudder angles is used. These values are displayed on tables in Appendix B;

which is a sample ship's data file included for clarity. The time to shift 60

25

degrees in course from the original heading is measured at four points and

used as input parameters for the ship. By the time ship's head has shifted by

60 degrees, the steady state turning rate for that speed/rudder combination

has been approached. This results in a total of 36 data points input into the

computer. Each of these points represents a constant value for the range of

rudder angle, speed and course change values.

3. Time of Flight

Time of flight calculations are made using just two facts; range to the

target and muzzle velocity of the projectile. Velocity, V, is broken into the

component vectors

V, = V & cos(O) and Vy = V e sin(@). At perigee the vertical velocity is zero.

Utilizing classic physics, Vy = acceleration due to gravity * (1/2 time of flight).

Range = Vx * time of flight. Substituting for Vx and Vy results in the

equation (4).

(4) 2-Range.g = cos(O)-sin(O)

V
2

Using the trigonometric identity sin(20) = 2sin(O)cos(O), equation (5) describes

the initial trajectory angle. Then, with the value for t and the Vx vector, time

of flight is solved without the user entering gunbarrel elevation for every

round. The time of flight calculation is made assuming the difference in sea

level and the target's elevation has a negligible effect on the time of flight.

An optional attribute, Target In Defilade, is included to select the higher

trajectory solution for the time of flight problem. Maximum range is

achieved at 450 barrel elevation. The barrel elevation for the high trajectory

solution is 90°-barrel elevation for the normal solution.

26

(5) arcsi 4 "RVe)= 20

Thes7 assumptions are made with the belief that this is good enough

to accomplish the underlying purpose of the model, measuring crew

performance. Using more detailed rudder angle, speed or course change

ranges would serve no purpose.

27

IV. ANALYSIS AND FEEDBACK OF CREW PERFORMANCE

The data collected by the model consists of error rate counts and time to

conduct certain evolutions. A separate analysis program takes the data and

scores the results. The results are to be used by non-analysts. The people who

review the exercises need to know where to focus attention, what is

satisfactory performance and determine the rate of progress. Keeping this in

mind, the questions to be answered by the analysis need to be straightforward

and must provide grades on the timed portions of the qualification exercises

and highlighting areas that do not meet established standards. In developing

the analysis portion of the model, it was decided that hardcopy feedback that

can be included with training 1 -_orts as a permanent record took priority

over on-screen graphical analysis. All confidence intervals use an alpha

value of 0.05; and the t-tests are used, since most sample sizes are less than 30

until a large number of runs are completed. The Aspin-Welch test is used to

compare sample means because this test handles the case where variance and

size of two samples are not equal. When known, ship's performance is

compared to fleet performance statistics.

There are four basic types of events to analyze. Each event type may have

many individual components, but only the base case is discussed.

Extrapolation to other cases is straightforward, and any major differences are

discussed here. The four basic types of events are detailed in the following

paragraphs.

28

A. COMMUNICATION ERROR RATE

Errors in communications between the ship's Radio Telephone Talker

and the spotter are measured by the rate of error. There are seven

communications errors outlined in paragraph 301.d of Reference 1. Errors of

specific type are both individually tallied and aggregated and compared to the

total number of required communications by the ship's Radio Telephone

Talker. Each error type has a different point value, and is recorded

accordingly. A summary of errors is provided as well as a confidence interval

on the percentage of total errors committed. A hypothesis test comparing the

means of the current exercise against the aggregate of the last five exercises

and the total aggregate is included. The report for this portion lists the errors

committed, the mean error rate and the bounds of the confidence intervals.

B. PASS/FAIL TIMED EVOLUTIONS

Pass/fail timed evolutions are those evolutions that if violated, cost the

ship penalty points. No credit is awarded for doing better than the minimum

standard. A summary of the errors committed is listed, and the penalty

points awarded.

C. SLIDING-SCALE TIMED EVOLUTIONS

Evolutions in this category have a maximum point value and depending

upon the ship's performance of these evolutions, a point value less than the

maximum may be awarded. The general points awarded formula takes the

form:

(time to complete - constant1)
points awarded = maximum points - constant

constant2

29

Most categories apply to all ships, but a few are fire control system specific.

These evolutions are timed and graded. Single event occurrences are

recorded and compared to historical data. Multiple event occurrences have

the mean and confidence intervals calculated and compared to fleet and ship

historical data.

D. EQUIPMENT CASUALTIES

If the option for random equipment failures is selected, equipment

failures occur at historical Mean Time Between Failure rates. Time to recover

from the equipment casualty is then measured and reported. A confidence

interval based on previous performance is calculated and compared with the

current casualty event.

E. TRAINING REPORTS

Three different exercise summaries are generated by the analysis. The

first is an event summary in a ship's log format. The second report is the

graded summary of the exercise detailing points attained, the total possible

points and points deducted. Included in the report heading is the starting

seed of the random number generator, so that this exercise can be repeated

exactly. The final report contains the statistics calculated from the exercise.

30

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The objective of this research is to develop an easy-to-use desktop

computer training model to improve shipboard coordination during Naval

Gunfire Support missions. This model incorporates object-oriented

programming techniques and is the first step in building a large library of

general purpose modules. The flexibility inherent in modular design will

become the basis from which any variant of interactive training can be easily

and quickly created. Within the scope of limited feedback and pending user

acceptance testing, this goal has been accomplished.

First, the intera-1ic .i between the ship and the spotter has been

completely scripted and implemented. All of the testable scenarios may be

run on this model. Additionally, the verse tility of adapting a testable scenario

to a target of opportunity increases the utility of the model to provide even

more realistic training than can be accomplished by a computer model alone.

Second, an easy-to-use graphical interface is developed which eliminates

the need for a user's manual during an exercise. The necessity of minimal

interface requirements frees the user from running the system to allow a

more thorough monitoring of exercise events.

Third, analysis of data generated by an exercise is aggregated into a

compact, easy-to-understand form that answers: What is the level of

proficiency? where does training need to be concentrated? is there an

improving trend?

31

Finally, the fusion of the concepts developed in the model increases the

realism to a level that was unattainable by an afloat command. This increase

in realism results in improved shipboard coordination when conducting

Naval Gunfire Support missions. More efficient use of Naval Gunfire ranges

are now possible with less waste of expensive ammunition.

B. RECOMMENDATIONS FOR FURTHER RESEARCH

1. Fleet Feedback

It is recommended that after this model has had some end use, the

feedback from the users be incorporated into the next release of the model.

Areas being considered for updating are model dynamic motion, moving

targets, operating system loading and training report format. The

methodology for representing a ship's dynamic motion should be assessed for

the expansion of the ship's data. This affects model fidelity. The model was

left intentionally sparse for operating system performance concerns. It is

likely that the end-use platform is a 286-based PC operating at its upper limits

with either Windows or OS/2. After the completion of user acceptance

testing, the trade-offs between model fidelity and operating system

performance should be evaluated and the model adjusted if desirable. The

scope, depth and utility of the statistical analysis assessed by the program can

be further tailored to training needs. Based on the feedback, computational

adjustments should be made accordingly. After completing the adjustments,

graphical methods for evaluating exercise data should be incorporated into

the analysis module.

32

2. Voice Recognition Technology

The introduction of inexpensive, commercially available voice

recognition hardware opens the door to training realism previously

unattainable. Specifically, products like Voice Navigator manufactured by

Articulate Systems are designed to interface with pre-existing software that

use pull-down menus as an interface in both directions. It recognizes speech

in addition to generating speech responses from text-based data files.

Expanding the menu bar to include a flat file listing of ship-to-spotter

communications allows interaction in the most realistic sense. This will

provide a hands-off mode of operation.

3. Incorporate Simvideo

The third leg of the integrated software development platform is

simvideo. Simvideo allows the user to "capture" an exercise run in tape file.

This tape file can be operated as if it were in a VCR. Forward, rewind, pause

and slow playback are all options of this package. This is a valuable tool for

post-exercise critiques.

4. Implement Spreadsheet Primitive

Currently, the model allows for entering and editing data via a

question and answer mode, which is slow. The spreadsheet primitive would

act as a front end to a data file and allow the user to view, enter and edit data

from a familiar spreadsheet form. This in turn would eliminate the need for

most of the prompts for individual pieces of data.

33

APPENDIX A. USER'S MANUAL

A. GETTING STARTED

1. Installing the Cylon Spotter

1. Create a directory on your hard drive named "Cylon". Initially, the
program and its required files needs two megabytes of space. As the
program is used and more data files are created, the memory
requirements increase.

2. Copy all of the files into the directory Cylon. The following files are
required.

" Blockls.atgt

• Blockls.data

• BlockIs.ptgt

* Blockls.shore

* CYLON.exe Note: This may not have the .exe extension.

" EX.list

* Gui.lib

" map.lis

* Seed

• Ship.data

3. Map files from the same location use the same root name and are
uniquely identified by the extensions. An example of this is the
Blockls map family. Included in a map family are area and point
target list specifications. Located in the data file are the geographic
specifications used to translate latitude and longitude to the
Geographic Display window dimensions. The shore file contains the
points used by the program to plot shorelines in the Geographic
Display. All four of these map family file extensions need to be
present, even if they aren't being used. The four file extensions are:

" .atgt Area Target list

* .data Geographic data file

* .ptgt Point Target list

• .shore Shoreline representation file

34

2. Running The Cylon Spotter

Run the CYLON program. A selection menu, like Figure A-i, is

presented. After entering the sei._ction, the user is prompted for further

information.

Loading data, one moment please
Welcome USS Merkin To the NGFS Cylon Spotter

Input the number of the option:

1. Verify Ship's Data
2. Change Ship's Data
3. Plan the next Excercise
4. COMMEX
5. Create New Geographic Display Chart

HIT <return> to TERMINATE this session

Figure A-1. The Introduction Menu

a. Verify Ship's Data

Option 1 presents the user with information contained in

Ship.data, the ship's data file. An example of this is shown in Appendix B.

b. Change Ship's Data

Option 2 allows the user to review the information presently in

the ship's data file and change it. The most important piece of data is the

operating characteristics of the ship. Specifically, these are the matrices that

contain turning rates for different speed/rudder combinations and the ship's

acceleration/deceleration rates. Deceleration rates are based on changing

speeds by ordering up the bell that is the ship's final speed. Propulsion

assisted deceleration, meaning the use of backing bells, is not taken into

35

account. It is recommended that a copy of Ship.data is printed prior to

changing any data. This enables the user to mark up the sheet with new

information in the form that is requested by the program.

c. Planning the Next Exercise

Planning an exercise involves deciding what combination of

area, point and coordinated illumination fire to use. Choice of an exercise

name is important, as it could possibly write over a pre-existing exercise.

Before entering the new exercise name, review the list provided, shown in

Figure A-2, to ensure that a good exercise is not inadvertently over-written.

The user is then prompted for the Map Family used in the exercise. If a new

geographic area is being implemented, the user may go straight to the

Geographic Editor from this menu, as seen in Figure A-3. This feature

eliminates the need to back out of the Scenario Editor to enter the new chart.

The Scenario Editor allows you to choose to follow a Gunsmoke exercise

exactly or to create an exercise suited to the needs of the ship as shown in

FigureA-4. When making a selection, the number of Fire For Effect rounds is

requested. This is the number of rounds in addition to the rounds needed to

spot onto the target. At present, the scenario editor does not allow mixing

custom exercises with the Gunsmoke specified exercises. Mixing of the

Gunsmoke exercises is allowed. To avoid ambiguity on what name the

Gunsmoke exercise is called, the exercise designation is used. Once the

planning is completed, a screen informs the user to print out the target list for

the exercise, see Figure A-5. An example target list is contained in Appendix

C.

36

The Following Excercises Are Already Named

test

demo
Input The Name Of The Excercise You Wish To Create

Re-use of previously named file will cause that data to be lost.

NOTE: Keep the name to under 8 characters to prevent
conflicts with the operating system.

Figure A-2. Reviewing Existing Exercises

Input the number of the Map Family for this Excercise

1. Blockls

2. shapes

3. test
4. Create New Geographic Display Chart.

Figure A 3. Selecting a Map Family

THESE OPTIONS ARE TO ASSST IN THE PREPARATION OF

AN NGFS EXCERCISE.

1. Point Fire Excercise

2. Area Fire Excercise

3. Coordinated Illumination Excercise
4. Z-40-G

5. Z-42-G

6. Z-43-G

7. Z-44-G

8. Z-45-0

9. Exit

Input the number of the option:

Figure A-4. Scenario Options

37

An exercise target list will be generated and stored in a file

called exercisenameTgt.lis. Print this list prior to commencing the

excercise to allow the plots a chance to create an excercise chart.

THIS IS REQUIRED BY THE CYLON SPOTTER

Figure A-5. Target List Message

d. COMMEX

An exercise may be successfully run after ship's data is verified to

be correct, a Map Family has been created and an exercise has been planned.

The user is presented with a menu similar to Figure 3, only requesting the

exercise name. The user is then prompted for one of three random number

seed options as seen in Figure A-6.

The last exercise used 2115429302 as the Starting Random Number Seed.

Input the number corresponding to your choice for Random Number Seed.

1. Re-Use Lost Seed: To re-run last drill Exactly

2. Choose New Seed: To re-run an old exercise Exactly

3. All Other Cases: Choose this most of the time.

Figure A-6. Random Number Seed Options

If the user wants to re-run the last exercise, the seed is automatically re-set. If

the user wants to re-run an old exercise, the seed number is found on the top

of the second page of the appropriate training report. An example is found in

Appendix D. For most exercises, it is recommended that the third option be

used. It is still possible to re-run an exercise, but the spots and number of

rounds to spot onto the target as well as random gun system failures will be

different. The ship is then given a moment to set up for the exercise. Once

the ship is ready, hitting the <RETURN> key commences the exercise. What

38

follows is the dialog that is normally associated with ship and spotter

communications.

e. Creating a New Geographic Chart

Care must be taken when entering geographic areas. Select the

chart that will be used during the actual exercise. There are two possible

systems for latitude/longitude input. The first uses

degrees/minutes/seconds, the second uses degrees/minutes/fractions of

minutes. The Cylon spotter does not have the capability to accept input in

one format and display positional information in the other. The input has

been designed so that the absolute difference between latitudes and longitudes

is plotted; this eliminates the necessity for labeling N/S or E/W. Problems

may be encountered when the chosen area straddles either a prime meridian

or the equator. Southern Hemisphere latitudes need to be preceded by a

negative sign (-) to create a north oriented chart, otherwise the image will be

upside down.

The geographic display represents an area 25 NM square. The

reference point is the lower left-hand corner. Choose this point to maximize

the amount of useful geographic area while providing sufficient sea room for

the model's ship to maneuver. It is possible that the initial ship's position

may be plotted off of the displayed area, in which case the gunfire exercise

should not commence until the ship has driven into the window and is

visible. After selecting the reference point, a scaling longitude is entered.

This enables the program to correlate distance in yards to minutes of

longitude at that given latitude. Remember that the distance represented by a

longitudinal measurement decreases as the distance from the equator

increases.

39

Select a name for the chart area. This becomes the root name for

the Map Family. All target lists, data and geographic files share this root

name. The files are distinguished by the extension. You are asked for graphic

objects, area targets and point targets in that order. Counter-battery targets are

selected from the point target list. When prompted for the number of

geographic object to input, enter the number of distinct shorelines to appear

in the window. In the Blockls example file, there are three shorelines; the

South East coast of Connecticut, Block Island proper and the northern tip of

Long Island. For island type objects, the last point entered must be the same

as the first point for the object to be closed. A lake should be added separately,

as it is an enclosed feature within another shoreline. Appendix C is an

example of a target list and shows just what information is required by the

program to maintain a target list.

Once a geographic map has been generated, there is no way

presently to edit the files. Using a text editor, the files can be altered if

necessary. Make a copy of the file before editing! Edit the duplicate file only;

this will prevent loss of data. Save the edited file as an ASCII text file only. If

it is saved as a word processor file, the file will contain embedded characters

that cause the Cylon Spotter to bomb. Rename the original file so that it can

be found easily.

(1) Adding/Deleting Shorelines. The .shore file is

organized in the following manner. The first integer in the file is the number

of shorelines. Then there are the number of points in each of the shorelines

following. The list of each shore point follows, with each shore point having

four data elements, the latitude, longitude and the window x and y positions.

To add a shoreline to a pre-existing, run Cylon, choose Create New

40

Geographic Chart and select a temporary name for the chart file. Input the

same data as the chart you will add these shorelines to. Input the shorelines.

Quit the program and open the file you wish to add to. Figure A-7 points to

the appropriate numbers. Increment the first integer to reflect the new total

number of shorelines, and the second number to indicate the total number of

points in the file. Preceding the first occurrence of the X position in the

window, insert the numbers corresponding to the number of points in each

of the new shorelines being added. Append the list of shoreline data points to

the bottom of the file.

2 - Number of Shorelines
48 '- Total number of points to be plotted
27 <- Number of points in shoreline 1
21 - Number of points in shoreline 2

38449.848024 <- X position in the window
27840.000000 <- Y position in the window
4113.920000 <- Latitude
7134.700000 <- Longitude

38480.243161
25580. 000000
4112.790000
7134.680000

Figure A-7. Sample .shore File

Deleting a shoreline is a little more tedious. Repeat the file

duplication steps as before. Open the file to be operated on. Decrement the

first integer by the number of shorelines you wish to remove. It is suggested

that only one shoreline at a time is taken out. Decrease the second integer by

the corresponding number of shorepoints to be deleted. Delete the line for

the number of points in that shoreline. Count down and delete the correct

number of points. Save the file. It helps to print out the file beforehand to

line out and adjust. A future release of the Cylon Spotter will have a more

elegant way around this problem.

41

f. Conducting the Analysis

After the exercise has been completed, select STOP from the

COMMEX menu, this quits the program. Return to the operating system

prompt and run the program Analysis. You are prompted for the name of

the exercise from a menu. The user is informed when the analysis is

complete. The training report is found in the file of the same name as the

exercise with the root .rpt.

B. NAVIGATING THE GRAPHIC USER INTERFACE

1. The Menu Bar

The menu bar is the interface for commands from the user to the

model. Under each heading there are sub-headings as shown in Figure A-8.

The headings are organized as follows: operations affecting program

execution are located in COMMEX, changing the ship's characteristics are

under PARAMETERS and altering the magnification of the geographic

display under CEO Display. When a menu item is not applicable to the

program, it appears dimmed and cannot be selected by the mouse. An

example of this is before program execution begins, the only selectable menu

tem is START; all others are dimmed.

COMMEH PARAMETERS GEO Display

START Ship's Parameters ZOOM IN
STOP ENTER FIH CANCEL ZOOM
PAUSE Set and Drift NUDGE
RESUME Muzzle Velocity

Figure A-8. Menu Bar Headings and Sub-headings

42

a. COMMEX Sub-Menus

Program execution begins when START is selected and

terminates with STOP. PAUSE allows the program to suspend operation.

This option is to allow the drill to be interrupted without quitting the

program. Time is suspended and all current values retained until execution

is resumed with the RESUME command.

b. Parameter Sub-Menus

The PARAMETER sub-menus change data that affects ship

position, course, speed, and ordered rudder angle. Set and Drift establishes

the effects of current and speed for the geographic display. Muzzle Velocity

allows the user to toggle between full and partial charge, normal and high

trajectory flight.

c. ZOOM Sub-Menus

These sub-menus affect the magnification and centering of the

geographic display. The positioning method, either mouse-click or

latitude/longitude, and the amount of magnification can be chosen. Once the

position and size are chosen, nudging the center of the zoom is permitted in

either course or fine increments.

2. The Dialog Boxes

Dialog boxes appear as the result of selecting a sub-menu. Only the

information pertinent to the menu item selected is displayed. Each dialog box

is comprised of several sub-elements. Value boxes are for inputting numeric

data, either integer or real. Check boxes accept boolean input, that is, the item

is checked and evaluated as TRUE or FALSE, not checked. Text boxes display

descriptive text helpful to successful use of the dialog boxes. The last type of

sub-element is a button. Most dialog boxes request input of some type.

43

Accompanying the request for information are two buttons labeled Change

and Cancel. Both are terminating buttons. Terminating buttons cause the

dialog box to erase when a mouse click is sensed on that button. Change

causes the new data entered into the value and check boxes to be accepted.

Selecting Cancel invalidates any new data that has been entered and provides

a way to exit a dialog box that has been inadvertently selected. Once a value

has been set in a dialog box, the value does not change until the user re-opens

the dialog box and changes that specific value.

a. Parameter Dialog Boxes

Selecting Ship's Parameters causes the left-hand dialog box in

Figure A-9 to appear. Changing the values in any or all of the three value

boxes takes effect when the Change button is clicked. Rudder convention is

positive numbers for right rudder and negative numbers for left rudder. A

rudder order with no ordered course at present has no effect. When either

the new course or speed is attained by the model, the program beeps, and a

message from the system appears to indicate which parameter has been

reached. When steady on ordered course, the rudder angle resets to rudder

amidships. Deceleration assumes normal bell changes and does not consider

propulsion assisted changes, that is, no backing bell has been ordered to

decrease the time required for the new speed to be attained. If in the opinion

of the user, ship maneuver's are beyond the scope of the model, a new fix

must be entered as promptly as possible.

Entering a new ship's position requires that the latitude and

longitude be entered along with the time of the fix in the HHMM.SS format.

That is, 1 hour 5 minutes and 25 seconds are entered as 105.25. The program

automatically positions the ship from the fix to its current position using

44

dead reckoning methods. Only enter a fix after the ship has steadied on

ordered course and speed. The model uses current course and speed at the

time the Enter Fix command is ordered and erroneously positions the ship if

it is not steady on ordered course and speed.

Course L Lat 14121.5!1
Speed F15. Lon 7153.42

Rudder 0.0

Time 1I05.21 lSChange Cancel
SCae

ENTER CRNCEL

Figure A-9. Dialog Boxes For Ship's Parameters

Set and drift are entered as a direction, degrees true, in the dialog

box shown in Figure A-10. The current values of set and drift may be checked

at any time by selecting the Set and Drift sub-heading under PARAMETERS.

The current value is displayed in the dialog box and selecting the CANCEL

button does not alter current settings. The set and drift values may be

changed at any time during program execution.

The muzzle velocity dialog box, Figure A-11, has two sets of

radio buttons for determining the charge and trajectory. In each case only one

button may be selected. After clicking on the Change button, the user is

shown a second dialog box to verify that the current muzzle velocity setting is

still accurate. At that time, a change to the muzzle velocity may be entered.

45

Direction LOOI4 CD
Speed L0.i0 C

Change Cancel)

Figure A-10. Set and Drift Dialog Box

E M " i

* Normal Charge
o Reduced Charge

-igh Angle Trajectory
o High Angle Trajectory

OK CANCEL J

Figure A-11. Muzzle Velocity Setting

b. ZOOM Dialog Boxes

The ZOOM menu causes the area of the geographic display

window to shrink. This feature is provided for two reasons. First, it allows

the accuracy of a geographic feature to be examined on a more precise scale.

Also, the default window dimensions do not permit viewing of target

locations. When the 4:1 zoom option is selected (Figure A-12), a flag is set to

make the target locations visible. The target the ship is currently engaging

blinks. Point targets are represented by a star mark while area targets are

represented by a square mark. 2:1 zoom magnifies the viewing area to 25,000

46

yards square. 4:1 zoom magnifies the viewing area to 12,500 yards square.

Canceling the zoom feature returns the window to its default dimensions of

50,000 yards by 50,000 yards.

2:1 ZOOM Zoom By LT/ON j

4:1 ZOO(Zoom By MouseClick
Cancel Cancel 1

Figure A-12. Dialog Boxes For Zoom

The Zoom Centering allows the user the option of zooming

centered on a specific location, such as target location or zooming centered on

the last mouse click position. If a zoom operation is scheduled to occur and a

boundary of the geographic display is violated, the zoom window shifts to

coincide with the boundary of the geographic window. To prevent

unnecessary entering and exiting of the zoom option because the positioning

of the zoom window is incorrect, a nudge option is provided. The Nudge

box, shown in Figure A-13, allows the zoomed portion to be shifted in the

four cardinal directions. The total distance of each nudge is based on the

zoom scale selected. Additionally, a fine nudge option is available to move

the zoom window half of the normal distance. Until the DONE button is

selected, the Nudge box will re-draw itself after every nudge operation. The

nudge distance for 2:1 zoom is 2500 yards and the 4:1 zoom nudge is 1250

v-rds.

47

LEFTDONE RIGHT

DOWN

~COURSE LIIFINE

Figure 13. Nudge Dialog Box

48

APPENDIX B. SAMPLE SHIP'S DATA FILE

The following is current ships data as of:

Fri Feb 14 01:57:58 1992

SHIP: USS Merkin DDG 666
CO: CDR Qweeg
XO: LCDR Annelid
Ship's GFCS: MK56 mod 4

Spotter's Call Sign: GS1
Ship's Call Sign: NAVl

Gun Battery Accuracy, (error is standard deviation):
range: 50.00
deflection: 25.00

Acceleration Data

Time in Seconds it takes To Increase Speed From the
Low End To the High End of the Speed Range

KNOTS SECONDS

0 TO 5 90.00

5 TO 10 90.00

10 TO 15 120.00

15 TO 20 120.00

20 TO 25 300.00

25 TO 30 600.00

49

Deceleration Data

Time in Seconds it takes To Decrease Speed From the
High End To the Low End of the Speed Range

KNOTS SECONDS

30 TO 25 300.00

25 TO 20 180.00

20 TO 15 60.00

15 TO 10 60.00

10 TO 5 60.00

5 TO 0 60.00

Turn Rate Data

Time in Seconds it takes to turn in Relative Degrees,
At a given Speed and Rudder Angle

TABLE FOR SPEED 5 Knots

Amount Of Turn In Relative Degrees

Rudder Angle 0-15 15-30 30-45 45-60

5 43.00 26.00 25.00 24.00

15 21.50 13.00 12.50 12.00

25 10.50 6.50 6.00 6.00

50

TABLE FOR SPEED 15 Knots

Amount Of Turn In Relative Degrees

Rudder Angle 0-15 15-30 30-45 45-60

5 43.00 22.00 19.00 19.00

15 21.50 11.00 9.50 9.50

25 10.50 5.50 5.00 5.00

TABLE FOR SPEED 25 Knots

Amount Of Turn In Relative Degrees

Rudder Angle 0-15 15-30 30-45 45-60

5 30.00 17.00 12.50 11.00

15 15.00 8.50 6.50 5.50

25 7.50 4.50 3.50 3.00

51

APPENDIX C. SAMPLE TARGET LIST

TARGET LIST FOR EXCERCISE test

Created on Mon Feb 17 13:58:52 1992 Using Map File: BlockIs

AREA TARGET LIST DATA

Tgt ID Latitude Longitude Width Length Quantity

AB001 4109.560 7136.580 200 100 75
AB002 4109.200 7136.440 500 500 10
AB003 4110.190 7135.590 600 400 20
AB004 4111.200 7135.780 100 100 15
AB005 4111.920 7135.200 100 100 1
AB006 4113.120 7134.580 100 50 45
AB007 4112.330 7133.920 250 100 125

AREA TARGET LIST DESCRIPTION

Tgt ID Target Type Protection

AB001 MEN IN THE FIELD NONE
AB002 ANTENAE FIELD NONE
AB003 MOOREDTROOPTRANSPORTS NONE
AB004 HELOSONTARMAC NONE
AB005 FUEL DEPOT NONE
AB006 MEN INTRENCHES
AB007 MEN IN THE FIELD NONE

52

POINT TARGET LIST DATA

Tgt ID Latitude Longitude Quantity

BZ001 4110.330 7133.850 1
BZ002 4110.150 7134.820 1
BZ003 4109.170 7133.100 3
BZ004 4110.870 7135.880 1
BZ005 4113.000 7134.000 1
BZ006 4111.000 7135.000 1
BZ007 4112.500 7134.630 1
BZ008 4110.500 7136.250 1
BZ009 4109.500 7136.500 1
BZ010 4113.320 7133.820 1
BZ011 4111.800 7135.450 1
BZ012 4112.330 7134.680 1

POINT TARGET LIST DESCRIPTION

Tgt ID Target Type Protection

BZ001 MICROWAVE TOWER NONE
BZ002 CONTROL TOWER NONE
BZ003 SHOREGUNBATTERY INCAVE
BZ004 FUEL DEPOT UNDERGROUND
BZ005 COMMANDCENTER UNDERGROUND
BZ006 FUEL PIER NONE
BZ007 POWER RELAYSTATION NONE
BZ008 SAM SITE SANDBAGGED
BZ009 COMMUNICATIONS CENTER CEMENT BUNKER
BZ010 AIRCRAFT ON GROUND NONE
BZ011 GUNBOATINHARBORENTRANCE NONE
BZ012 OBSERVATIONTOWER NONE

53

APPENDIX D. PROGRAM CODE

MAIN MODULE cylon;

PROGRAM NAME: cylon
AUTHOR: LT. WARREN A. MAZANEC
DATE WRITTEN: 1/26/92
LAST MODIFIED: 2/17/92

DESCRIPTION:

This is the main module of a Naval Gunfire Support Simulation

FROM ShipData IMPORT VerifyShip, ChangeShip;
FROM Plan IMPORT PlanEx;
FROM ExList IMPORT COMMEX;
FROM Global IMPORT GlobalInit, ShipFile, ExData, BeginSeed, Rand;
FROM StdScrn IMPORT Screen, Lines;
FROM Geo IMPORT CreateGeoDisplay;
FROM IOMod IMPORT StreamObj, FileUseType(Output);

VAR
selection : INTEGER;

FLAG : CHAR;

seedfile : StreamObj;

BEGIN
OUTPUT(" . .);

GlobalInit;

FLAG := 'Y';

WHILE FLAG = 'YE

selection := 99;
OUTPUT("Welcome USS ",ShipFile.name," To the NGFS Cylon Spotter");
OUTPUT(".);

OUTPUT(.)

OUTPUT("Input the number of the option: ");
OUTPUT(" ") ;

OUTPUT(' ");

OUTPUT(" 1. Verify Ship's Data ");
OUTPUT(" 2. Change Ship's Data ");
OUTPUT(" 3. Plan the next Excercise ");

OUTPUT(" 4. COMMEX ");
OUTPUT(" 5. Create New Geographic Display Chart");
OUTPUT(C" ")

54

OUTPUT(" HIT <return> to TERMINATE this session");

INPUT (selection);

CASE selection
WHEN 1:

VerifyShip;

WHEN 2:
ChangeShip;

*WHEN 3:
PlanEx;

WHEN 4:
COMMEX;

WHEN 5:
CreateGeoDisplay;

OTHERWI SE
FLAG := IN';

END CASE;

NEW(seedfile);
ASK seedfile TO Open("Seed", Output);
ASK seedfile TO Writelnt(BeginSeed,32);
ASK seedfile TO Writelnt(Rand.currentSeed,32);
ASK seedfile TO Close;
DISPOSE (seedfile);

END WHILE;

OUTPUT(" GEL)

END MODULE.

55

DEFINITION MODULE AreaSpot;

MODULE NAME: AreaSpot
AUTHOR: LT. WARREN A. MAZANEC
DATE WRITTEN: 12/12/91
LAST MODIFIED: 2/17/92

DESCRIPTION:

This is the definition module that controls the spotting for an area
target.

FROM Spotter IMPORT SpotterObj;
FROM Global IMPORT TargetRecType, AimPt;

TYPE
AreaSpotObj = OBJECT(SpotterObj);
ASK METHOD Prosecute(IN SALVOS:INTEGER; IN mapfamily :STRING);
ASK METHOD GetAreaTgt(IN mapfamily : STRING);

END OBJECT;

VAR
ASpotter : AreaSpotObj;
tgtl : TargetRecType;

END MODULE.

56

IMPLEMENTATION MODULE AreaSpot;

MODULE NAME: AreaSpot
AUTHOR: LT. WARREN A. MAZANEC
DATE WRITTEN: 12/12/91
LAST MODIFIED: 2/17/92

DESCRIPTION:

This is the module that controls the spotting for an area target.

FROM IOMod IMPORT StreamObj, FileUseType(Input, Output);
FROM Global IMPORT TargetRecType, FirstTarget, AimType, Rand, AimPt,

ExData;
FROM Spotter IMPORT SpotterObj;
FROM StdScrn IMPORT Screen, Lines;
FROM UtilMod IMPORT ClockTimeSecs, ClockRealSecs, Delay;

OBJECT AreaSpotObj;

ASK METHOD GetAreaTgt (IN mapfamily : STRING);

VAR
strml :StreamObj;

BEGIN
NEW(tgt 1);
FirstTarget := tgtl;
NEW(strml);
ASK strml To Open ("AreaTgt.list", Input);
ASK strml TO ReadString(tgtl.tgtID);
ASK strml TO ReadReal(tgtl.x);
ASK strml TO ReadReal(tgtl.y);
ASK strml TO Readlnt(tgtl.Aim);
ASK strml TO ReadString(tgtl.type);
ASK strml TO ReadString(tgtl.protection);
ASK strml TO Readlnt(tgtl.width);
ASK strml TO Readlnt(tgtl.length);
ASK strml TO ReadString(tgtl.quantity);
ASK strml TO Close;
DISPOSE (strml);

END METHOD;

ASK METHOD Prosecute(IN salvos:INTEGER; IN mapfamily:STRING);

VAR
duxn2 CHAR;

Spotter : SpotterObj;

roundsfired,

57

FFEf lag INTEGER;

BEGIN
NEW (ASpotter);

ASK ASpotter TO Greeting;
ASK ASpotter TO GetAreaTgt(mapfamily);
ASK ASpotter To GetAimPt;

OUTPUT("FIRE MISSION TARGET NUMBER ", tgtl.tgtID, "OVER");
Screen (8);
INPUT(dumf2);
ASK ExData TO WriteReal(ClockRealSecs, 8, 4);
ASK ExData TO WriteLn;

Lines (2);
Screen (3);
OUTPUT("1FIRE, MISSION TARGET NUMBER ", tgtl.tgtID, "1 OUT");
INPUT(dun2);
ASK ExData TO WriteReal(ClockRealSecs, 8, 4);
ASK ExData To WriteLn;

Lines (2);
Screen(6);
OUTPUT ("FROM TARGET NUMBER "l,tgtl .tgtID);
OUTPUT ("DIRECTION ", AirnPt .bearing, " MAGNETIC");
OUTPUT (AimPt .rangedir," "1,AiznPt .range," ",AirnPt .elevdir," "

AimPt.elev);
OUTPUT (tgtl. type);
OUTPUT(salvos," SALVOS IN EFFECT SHORE ADJUST OVER");
Screen (8);
INPUT(dum2);
ASK ExData TO WriteReal(ClockRealSecs, 8, 4);
ASK ExData TO WriteLn;

Lines (2);
Screen (3);
OUTPUT("FROM TARGET NUMBER "l,tgtl.tgtID);
OUTPUT("'DIRECTION ", AimPt.bearing, " MAGNETIC");
OUTPUT(AimPt.rangedir," "1,AirnPt.range," ",AimPt.elevdir," "

AimPt.elev);
OUTPUT (tgt1. type);
OUTPUT(salvos," SALVOS IN EFFECT SHORE ADJUST OUT");
INPUT (dumn2) ;
ASK ExData TO WriteReal(ClockRealSecs, 8, 4);
ASK ExData TO WriteLn;

Lines (2);
Screen (3);
OUTPUT("IGUN TARGET LINE ___DEGREES MAGNETIC");
OUTPUT("lREADY ___(TIME OF FLIGHT IN SECONDS)");
OUTPUT ("OVER");
INPUT(dum2);
ASK ExData TO WriteReal(ClockRealSecs, 8, 4);
ASK ExData TO WriteLn;

58

Lines (2);
Screen(6);
OUTPUT("GJN TARGET LINE ___DEGREES MAGNETIC");
OUTPUT(-READY _ (TIME OF FLIGHT IN SECONDS)");
OUTPUT(-BREAK , FIRE , OVER");
Screen (8);
INPUT(dum2);
ASK Exflata TO WriteReal(ClockRealSecs, 8, 4);
ASK ExData TO WriteLn;
Lines (2);

Screen (3);
OUTPUT("FIRE , OUT");
INPUT (dum2) ;
ASK ExData TO WriteReal(ClockRealSecs, 8, 4);
ASK ExData TO WriteLn;

FFEf lag := 0;
roundsfired :=0;

WHILE Croundsfired < salvos) AND (FFEf lag - 0)

Screen (3);
OUTPUT("SHOT");
INPUT(dum2);
ASK ExData TO WriteReal(ClockRealSecs, 8, 4);
ASK ExData TO WriteLn;

Screen (3);
IF (roundsfired + 1) =salvos

OUTPUT("'SPLASH ,ROUNDS COMPLETE , OVER");

ELSE
OUTPUT("ISPLASH ,OUT");

END IF;
INPUT(dum2);
ASK ExData TO WriteReal(ClockRealSecs, 8, 4);
ASK Exflata TO WriteLn;

IF (roundsfired + 1) < salvos
Screen(6);
OUTPUT ("RIGHT/LEFT");
OUTPUT ("ADD/DROP"1);
OUTPUT ("UP/DOWN"I);
OUTPUT("OUT"1);
Screen(8);
IN'PUT(dum2);
ASK ExData TO WriteReal(ClockRealSecs, 8, 4);
ASK ExData TO WriteLn;
Lines (2);

Screen(3);
OUTPUT ("RIGHT/LEFT");
OUTPUT ("ADD/DROP");
OUTPUT ("UP/DOWN");

59

OUTPUT("OUT");
INPUT(dum2);
ASK ExData TO WriteReal(ClockRealSecs, 8, 4);
ASK ExData TO WriteLi;

END IF;

roundsfired := roundsfired + 1;

END WHILE;

Screen(6);
OUTPUT("lROUNDS COMPLETE ,END OF MISSION");
OUTPUT(-'TARGET NUMBER ",tgtl.tgtlD, " DESTROYED ,OVER");

Screen (8);
INPUT(dum2);
ASK ExData TO WriteReal(ClockRealSecs, 8, 4);
ASK ExData TO WriteLn;

Screen (3);
OUTPUT("ROUNDS COMPLETE ,END OF MISSION");
OUTPUT("lTA.GET NUMBER ",tgtl.tgtlD, " DESTROYED ,OUT");

INPUT(dum2);
ASK Exflata TO WriteReal(ClockRealSecs, 8, 4);
ASK ExData TO WriteLn;

END METHOD;

END OBJECT;

END MODULE.

60

DEFINITION MODULE ExList;

MODULE NAME: ExList
AUTHOR: LT. WARREN A. MAZANEC
DATE WRITTEN: 11/12/91
LAST MODIFIED: 11/21/91

DESCRIPTION:

This is the definition module that coordinates the event sequence during
an exercise.

PROCEDURE COMMEX;

END MODULE.

61

IMPLEMENTATION MODULE ExList;

MODULE NAME: ExList
AUTHOR: LT. WARREN A. MAZANEC
DATE WRITTEN: 11/21/91
LAST MODIFIED: 2/17/92

DESCRIPTION:

This is the module that coordinates the event sequence during an
exercise.

FROM StdScrn IMPORT Screen, Lines;
FROM IOMod IMPORT FileUseType (Input,Output) ,StreamObj,

FileExists;
FROM PointSpot IMPORT PSpotter;
FROM AreaSpot IMPORT ASpotter;
FROM Global IMPORT Rand,BeginSeed,EndSeed;

PROCEDURE COMMEX;

TYPE
ExRecType =RECORD

ex : INTEGER;
salvos : INTEGER;
nextEx ExRecType;

END RECORD;

VAR
i'j,
nuxnex,
FLAG,
inpt : INTEGER;

map file,
exname STRING;

exlist,
seedfile,
inl : StreamObj;

TempEx,
Excercise,
FirstEx : ExRecType;

drill : ARRAY INTEGER OF STRING;

BEGIN
NEW(exlist);
ASK exlist TO open("EX.list", Input);
ASK exlist TO Readlnt(nunex);

62

OUTPUT("Select The Number OF The Excercise To Be Run");
NEW(drill, l..numex);

FOR i:= 1 TO numex
ASK exlist TO ReadString(drill[i]);
OUTPUT(i, . . ",drill[il);

END FOR;
INPUT(i);

WHILE (i < 1) OR (i > numex)
OUTPUT("The number entered was incorrect,review the list and try
again");
FOR i:= 1 TO numex

OUTPUT(i, .. ",drill(i]);
END FOR;
INPUT(i);

END WHILE;

exname := drili[i] + ".ex";

NEW (seedfile);
IF FileExists("Seed") = FALSE
ASK seedfile TO Open("Seed", Output);
ASK seedfile TO WriteInt(Rand.originalSeed,32);
ASK seedfile TO WriteInt(Rand.currentSeed,32);
ASK seedfile TO Close;

END IF;

ASK seedfile TO Open("Seed", Input);
ASK seedfile TO ReadInt(BeginSeed);
ASK seedfile TO ReadInt(EndSeed);
ASK seedfile TO Close;
DISPOSE(seedfile);

OUTPUT;
OUTPUT;
OUTPUT("The last exercise used ", BeginSeed, " as the Starting
Random Number Seed.");
OUTPUT;
OUTPUT("Input the number corresponding to your choice for Random
Number Seed.");
OUTPUT(" 1. Re-Use Last Seed: To re-run last drill Exactly");
OUTPUT(" 2. Choose New Seed: To re-run an old exercise
Exactly");
OUTPUT(" 3. All Other Cases: Choose this most of the time.");
OUTPUT;
INPUT(i);

CASE i
WHEN 1:

ASK Rand TO SetSeed(BeginSeed);

WHEN 2:
OUTPUT("Input Seed - Must be an INTEGER!");
INPUT (j);

63

ASK Rand TO SetSeed(j);
BeginSeed:=j

OTHERWI SE
ASK Rand TO SetSeed(EndSeed);
BeginSeed :=EndSeed;

END CASE;

NEW(inl);
ASK inl TO Open(exname, Input);
ASK inl TO ReadString(mapfile);
NEW(PSpotter);
NEW (ASpotter);

FLAG :=0;

Lines (2);
Screen (5);
INPUT (inpt);

Lines (3);
OUTPUT('A review of the scheduled excercise follows:");
Lines (1);
OUTPUT("Using Map Family: ",mapfile);
Lines (1)

WHILE NOT (ASK inl eof)

IF FLAG = 0
NEW(Excercise);
Excercise.nextEx := NILREC;
FirstEx := Excercise;
FLAG := 1;

ELSE
TempEx :=Excercise;

NEW(Excercise);
TempEx.nextEx :=Excercise;

Excercise.nextEx :=NILREC;

END IF;

ASK inl TO Readlnt(Excercise.ex);
ASK inl TO Readlnt(Excercise.salvos);

CASE Excercise.ex

WHEN 1:
OUTPUT(I'Gunfire Excercise Number",Excercise.ex);
OUTPUT("Point Fire Excercise ");
OUTPUT('Nuiber Of Salvos ",Excercise.salvos);

WHEN 2:
OUTPUT("Gunfire Excercise Number",Excercise.ex);
OUTPUT("Area Fire Excercise")

64

OUTPUT("Nunber of Salvos ",Excercise.salvos);

WHEN 3. .10:

OTHERWI SE

END CASE,

Lines (1);
Screen (5);
INPUT(inpt);
Lines (!);

END WHILE;

FLAG 0;
Excercise :=FirstEx;

WHILE FLAG =0

CASE Excercise.ex

WHEN 1:
ASK PSpotter TO

Prosecute (Excercise.salvos,mapfile);
IF Excercise.nextEx = NILREC

FLAG := 1;
ELSE

Excercise :=Excercise.nextEx;
END IF;

WHEN 2:
ASK ASpotter TO
Prosecute (Excercise. salvos,mapf:-
IF Excercise.nex*-x = NILREC

FLAG := 1;
ELSE

Excercise Excercise.nextEx;
END IF;

OTHERWISE

END CASE;

END WHILE;

END PROCEDURE;

END MODULE.

65

DEFINITION MODULE Geo;

MODULE NAME: Geo
AUTHOR: LT. WARREN A. MAZANEC
DATE WRITTEN: 1/12/92
LAST MODIFIED: 1/26/92

DESCRIPTION:

This is the definition module that creates and maintains the geographic
display.

FROM Global IMPORT TargetRecType;

PROCEDURE CreateGeoDisplay;

PROCEDURE DConvert(IN mark : REAL; IN system : INTEGER) : REAL;

VAR

sys : INTEGER;

dlat,
dlon,
scale : REAL;

MapFamily : STRING;

END MODULE.

66

IMPLEMENTATION MODULE Geo;

MODULE NAME: Geo
AUTHOR: LT. WARREN A. MAZANEC
DATE WRITTEN: 1/12/92
LAST MODIFIED: 2/20/92

DESCRIPTION:

This is the module that creates and maintains the geographic display.

FROM Global IMPORT TargetRecType;
FROM StdScrn IMPORT Reminder, Lines;
FROM TgtMkr IMPORT CreateAreaTgt, CreatePointTgt;
FROM IOMod IMPORT StreamObj, FileUseType(Output, Input);

*** ************** DConvert ************************

PROCEDURE DConvert(IN mark : REAL; IN system : INTEGER) REAL;

VAR
temp,
deg,
min,
sec REAL;

dummy : INTEGER;

BEGIN

IF system = 1
temp := mark/10000.0;
dummy := TRUNC(temp);
deg := FLOAT(dummy);

temp := (temp - deg) * 100.0;
dummy := TRUNC(temp);
min := FLOAT(dummy);
temp := (temp - min) * 100.0;
min := min/60.0;
deg := deg + min;

dummy := TRUNC(temp);
sec := FLOAT(dummy);
sec := sec/3600.0;
deg : deg + sec;

ELSE {start with DDMM.mmm}
temp := aark/100.0; {DD.M~mzmm}
dummy := TRUNC(temp);
deg := FLOAT(dummy);

67

temp :- (temp - deg) * 100.0; {00.Mmmm * 100 =MM.mmmnl

min: temp/60.0;
deg :deg + min;

END IF;

RETURN deg;

END PROCEDURE;

~~~ ~~ CreateGeoDisplay *******}

PROCEDURE CreateGeoDisplay;

TYPE
ShorePtType = RECORD

x REAL;
y REAL;
lat REAL;
ion REAL;
next: ShorePtType;

END RECORD;

VAR
lat, ion,
lon2, dlon2,
equatorlon,
temp . REAL;

changeFlag,
areaFlag,
ptFlag,
shoreFlag STRING;

edit,
ptctr,
TotalShorelines,
TSLctr,
totshorepts,
i,j,k : INTEGER;

shorectr : ARRAY INTEGER OF INTEGER;

temnpptgt, ptgt,
cbat, tempctgt,
firstpt,
firstcounter :TargetRecType;

FirstShore,
LastShore,
StartingShore,
tempshore,
shore : ShorePtType;

mapf ile,

68



DataFile,
PtFile,
ShoreFile StreamObj;

maps ARRAY INTEGER OF STRING;

outfile STRING;

BEGIN
OUTPUT("Check the chart to be used for this excercise and determine
the system");
OUTPUT("for latitude and longitude. It will be in one of the
following formats");
OUTPUT(" 1. 41-09-45.0 as 410945.0 <DDMMSS.S> ");
OUTPUT(" or 2. 41-09.75 as 4109.75 <DDMM.rm> - note they are
the same number");
OUTPUT;
OUTPUT("Decide which system your chart will be using and enter the

corresponding");
OUTPUT("number: 1 or 2");
INPUT(sys);
OUTPUT;
OUTPUT("IMPORTANT NOTE!!! it is not necessary to add the
identifiers N/S or E/W");
OUTPUT(" The geographic reference system uses
an internal method");
OUTPUT(" which depends on the absolute
difference between the");
OUTPUT(" reference point and the entered
p, int. To enter an");
£JTPUT(" identifier with the Lat/Lon will
result in ");
OUTPUT(" a system error.");
CUTPUT;

CTJTPUT("INPUT the LAT/LON of the Lower Left Corner of the Geo
risplay.");
,.JTPUT'"This will be used as a reference mark for all other
positions.");
OUTPUT;
(,UTPUT("Latitiude?")

Peminder(sys);
NPUT(lat);

'UTPUT("Longitude? ");
reminder (sys);

!NPUT(lon);
Lines(2);
CUTPUT("INPUT the Longitude 10,000 yds to the right of the
r,3ference Longitude");
OJTPUT("This longitude will be used to determine the scaling
factor for");
OUTPUT("accurate longitude placement.");
OUTPUT("Scaling Longitude? ");
Reminder(sys);
INPUT(lon2);

69



dlat := DConvert(lat, sys);
dion DConvert(lon, sys);
dlon2 := DConvert(lon2, sys);

OUTPUT("converted lat is: ",dlat);
OUTPUT("converted lon is: ",dlon);
OUTPUT("converted scale lon is:",dlon2);

{**********************************************************
Function to calculate the scaling factor to account for the amount

of contraction between two longitudes as a pole is approached.

At the equator:

1 min of longitude = 1 min of latitude = 1 nautical mile = 2000yds
10,000 yds = 5 min of lon or lat at the equator =>
60 min of lat/lon = 1 degree of lat/lon

=> 5 min * (1 degree/ 60 min) = 0.083333

As a pole is approached, I min lon < 1 min of lat = 2000yds.
Therefore, a constant displacement in yards from a reference longitude
increases in displacement measured in degrees of longitude.

ex: at longitude 70.000 W a 10,000 yard displacement at the equator
yields 0.083333 degrees longitude displacement at 41.000 N (Long
Island Sound) yields 0.10967 degrees longitude displacement.

This is an increase of 1.316 = SCALE
= (ref lon - scaling lon)/ 0.083333

To calc the distance in yards from the reference for a chart
location =>

(ref Ion - Ion of tgt) 10,000
distance = *

scale 0.083333

substituting in scale yields =>

(ref ion- ion of tgt)
1 10,000

(ref ion - ion of 10k displ)

******** ************ ********* ** ****************************** ***** I

scale :=10000.0 / ABS(dlon2 - dlon);

OUTPUT('scaling factor iR ",scale);

Lines(2);
OUTPUT(" Input the name of the Map Family You are creating.");
OUTPUT('A Map Family will create files with Lae same name, but
different extensions");
OUTPUT("for the appropriate routines. This is an aid to simplify
bookkeeping by the user");
OUTPUT("as a list of existing maps will offered, and only the base
file name will be ");

70



OUTPUT("required. );
OUTPUT;
OUTPUT(" Limit the name to 8 characters to avoid operating
system conflicts.");
OUTPUT;

OUTPUT("Input the Map Family Name");
INPUT(MapFamily);
outfile := MapFamily + ".data";

NEW(mapfile);
ASK mapfile TO Open("map.lis", Input);
ASK mapfile TO ReadInt(j);
NEW(maps, l..j+l);

FOR k := 1 TO j
ASK mapfile TO ReadString(maps[k]);

END FOR;

k:= k+l;
maps[k] := MapFamily;
j := j+l;

ASK mapfile TO Close;
ASK mapfile TO Open("map.lis", Output);

ASK mapfile TO WriteInt(j,3);
ASK mapfile TO WriteLn;

FOR k := 1 TO j
ASK mapfile TO WriteString(maps[k]);
ASK mapfile TO WriteLn;

END FOR;

ASK mapfile TO Close;
DISPOSE(mapfile);

Creating a data file that storeE pertinent map family
data in following order:

1. lat/lon system
2. referenc. lat
3. reference lon
4. scalir4 lon
5. reference lat in decimal form
6. reference lon in decimal form
7. scaling lon in decimal form
8. scaling factor applied to lon differnce

the system procedure FileExists will be called to
determine if a point file exists, if the file does not
exist, a notice to the user will be issued, and program
execution will continue.

71



NEW(DataFile);

ASK DataFile TO Open(outfile,Output);
ASK DataFile TO WriteInt(sys,4);
ASK DataFile TO WriteLn;

ASK DataFile TO WriteReal(lat,12,6);
ASK DataFile TO WriteLn;

ASK DataFile TO WriteReal(lon,12,6);
ASK DataFile TO WriteLn;

ASK DataFile TO WriteReal(lon2,12,6);
ASK DataFile TO WriteLn;

ASK DataFile TO WriteReal(dlat,12,6);
ASK DataFile TO WriteLn;

ASK DataFile TO WriteReal(dlon, 12,6);
ASK DataFile TO WriteLn;

ASK DataFile TO WriteReal(dlon2,12,6);
ASK DataFile TO WriteLn;

ASK DataFile TO WriteReal(scale,12,6);
ASK DataFile TO WriteLn;

ASK DataFile TO Close;
DISPOSE(DataFile);

***************** SHCRE POINTS ************************

OUTPUT;
OUTPUT;
OUTPUT("How many seperate graphic objects (shorelines) do you wish to
enter?");
INPUT(TotalShorelines);
OUTPUT;
OUTPUT;

IF TotalShorelines > 0
OUTPUT("***** Notes On Entering Shoreline Points *****");
OUTPUT("1. After entering each point you will be asked of you wish
to enter another");
OUTPUT(" point on the current shoreline. When you are through
with the current");
OUTPUT(" shoreline, enter N at the prompt. You will then be
prompted for the points");
OUTPUT(" for the next shoreline. When you input N for the last
shoreline, you will");
OUTPUT(" prompted for targets.");
OUTPUT;
OUTPUT("2. If the geographic object is an island or an enclosed
object, ensure the last");

72



OUTPUTC" point entered is the same as the first point to
close off the polygon.");
OUTPUT;

END IF;

NEW(shorectr, 0. .TotalShorelines);
NEW(shore);
StartingShore :=shore;
TSLctr :=0;

WHILE TSLctr < TotalShorelines

TSLctr :=TSLctr + 1;
shoreFlag ""
changeFlag "N";
shorectr[TSLctr] :=0;
FirstShore := shore;
WHILE (shoreFlag = "Y") OR (shoreFlag y =

shorectr[TSLctr] : shorectr[TSLctr3 +1;
OUTPUT;
OUTPUT;
OUTPUT("Input the Lat-'cude of shore point", shorectr(TSLctrl,
Reminder (sys);
INPUT (shore. lat);
shore.y := ABS(DConvert(shore.lat, sys) - dlat) * 120000.0;
OUTPUT("'Input the Longitude of shore point",shorectr[TSLctr]," )

Reminder (sys);
INPUT (shore. lon);
shore.x :=ABS(DConvert(shore.lon, sys) - dlon) *scale;

shore.next := NILREC;

OUTPUT("Another shore point ? <YIN>"1);
INPUT (shoreFlag);

IF (shoreFlag = "Y") OR (shor.-Fiag = ""

tempshore := shore;
NEW(shore);
tempshore.next :=shore;

ELSE
LastShore :=shore;

changeFlag "Y=
END IF;

END WHILE;

WHILE (changeFlag ="Y") OR (changeFlag y =

OUTPUT;
OUTPUT;
OUTPUT("You have input ",shorectr[TSLctr)," points and they are as
follows:");
OUTPUT;
OUTPUT("Pt no. lat lon");
i :- 1;
shore := FirstShore;
WHILE i <= shorectr(TSLctr]

73



OUTPUTC' ",", ",shore.lat," ",shore.lon);
shore :=shore.next;
1 : i + 1

END WHILE;

OUTPUT;
OUTPUT;
OUTPUT("Would You like to Change A Point? <YIN>"1);
INPUT (changeFlag);
OUTPUT;

IF (changeFlag = "Y") OR (changeFlag y "y")

OUTPUT;
OUTPUT;
OUTPUT("INPUT the number of the record you wish to edit");
INPUT (edit);
OUTPUT;

1 : 1;
shore :=FirstShore;
WHILE i < edit

1 1 +i1+

shore :=shore.next;
END WHILE;

OUTPUT(" ,i" ",shore.lat," ",shore.lon);
OUTPUT("'Input the new Latitude")
Reminder (sys) ;
INPUT(shore.lat);
OUTPUT('lnput the new Longitude )

Reminder (sys);
INPUT (shore. ion);
shore.y ABS(DConvert(shore.lat, sys) -dlat)*120000.O;

shore.x ABS(DConvert(shore.lon, sys) -dion) * scale;

END IF;

END WHILE;

IF TSLctr < TotalShorelines
tempshore :=LastShore;
NEW(shore);
tempshore.next :=shore;

END IF;

END WHILE;

{*4*counting up the total number of shorepoints entered

totshorepts :=0;

WHILE i<= TotalShorelines
totshorepts :=totshorepts + shorectr[i];

i + 1;

74



END WHILE;

creating shorepoints file in the following order:
1. number of shore objects
2. total number of shore objects
3. breakdown of number of pts for each object, each on its own line
4. listing of all of the points.

IF totshorepts > 0
OUTPUT("Here in creating map shore files");
outfile := MapFamily + ".shore";
OUTPUT(I"the outfile name is ", outfile);
NEW (ShoreFile);
ASK ShoreFile TO Open(outfile,Output);

ASK ShoreFile TO Writelnt(TotalShorelines,4);
ASK ShoreFile TO WriteLn;
ASK ShoreFile TO Writelnt (totshorepts, 6);
ASK ShoreFile TO WriteLn;

i := 1;
WHILE i<= TotalShorelines
ASK ShoreFile TO Writelnt(shorectrti),5);
ASK ShoreFile TO WriteLn;
i := i + 1

END WHILE;

i := 0;
shore := StartingShore;

WHILE i < totshorepts

ASK ShoreFile TO WriteReal (shore.x,l2, 6);

ASK ShoreFile TO WriteLn;

ASK ShoreFile To WriteReal(shore.y,12,6);
ASK ShoreFile TO WriteLn;

ASK ShoreFile TO WriteReal(shore.lat,l2, 6);
ASK ShoreFile TO WriteLn;

ASK ShoreFile TO WriteReal(shore.lon,12, 6);
ASK ShoreFile TO WriteLn;

shore := shore.next;
i := i +1;

END WHILE;

ASK ShoreFile To Close;
DISPOSE (ShoreFile);

75



END IF;

CreateAreaTgt;
CreatePointTgt;

END PROCEDURE;

END MODULE.

76



DEFINITION MODULE Global;

I --- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

MODULE NAME: Global
AUTHOR: LT. WARREN A. MAZANEC
DATE WRITTEN: 11/7/91
LAST MODIFIED: 2/17/92

DESCRIPTION:

This is the definition module that maintains the variables required to
bE set and initialized at time of program execution.

FROM IOMod IMPORT StreamObj;
FROM RandMod IMPORT RandomObj;

TYPE
AimType (point, area, counterbattery);

AirPtRecType = RECORD
bearing INTEGER;
defl INTEGER;
defl ir : STRING;
range : INTEGER;
rangedir STRING;
elev . INTEGER;
elevdir : STRING;
Xcoord : REAL;
Ycoord : REAL;
nextRec AimPtRecType;

END RECOP2;

TargetRecTvpe = RECORD
tgtID : STRING;
x REAL;
y : REAL;
lat REAL;
lon : REAL;
Aim : INTEC'R;
type : STRING,

protection: STRIN3;
width : INIECR;
length : INTEGER;
quantity STRING;
next : TargetRecType;

END RECORD;

ShipRecType RECORD
name STRING;
desig STRING;

,7



huilno STRING;
COrank STRING;
COname STRING;
XOname STRING;
XOrank STRING;
GFCS STRING;
model INTEGER;
accel FIXED ARRAY (0 6] OF REAL;
decel FIXED ARRAY [0 rV OF REAL;
turflrate FIXED ARRAY [1 l . .3], [1..41] OF REAL;

END RECORD;

ErrorRecType =RECORD

range REAL; (errcr is std deviation in meters)
deflection REAL;

END RECORD;

PROCEDURE Globallnit;

VAR
Xma x,
Ymax REAL;

CSbeach,
CSship . STRING;

ShipAccuracy,
SpotterBias: ErrorRecType;

FirstTarget: TargetRecType;

ExData StreamObj;

ShipFile ShipRecType;

Rand : RandomObj;

AimPt AimPtRecType;

TSpeed,
TRudder FIXED ARRAY [0.-3] CF INTEGER;

THead FIXED ARRAY [0.-4] OF INTEGER;

beginSeed,
EndSeed IN? LGER;

END MODULE.

78



IMPLEMENTATION MODULE Global;

MODULE NAME: Global
AUTHOR: LT. WAPREN A. MAZANEC
DATE WRITTEN: 11/7/91
LAST MODIFIED: 2/17/92

DESCRIPTION:

This is the module that maintains the variables required to be set and
initialized at time of program execution.

FROM IOMod IMPORT StreamObj, FileUseType(Input,Output), FileExists;
FROM StdScrn IMPORT Screen;

PROCEDURE CreateShipDataFile;

VAR
ShipDataFile StreamObj;

i,j,k . INTEGER;

BEGIN

OUTPUT("Welcome To The NGFS Cylon Spotter Program");
OUTPUT(" ");

OUTPUT("First, I would like a little information about your
command");
OUTPUT(" ");
OUTPUT('Enter Your Ship's Name: example - Anthrax");
INPUT(ShipFile.name);
OUTPUT(" ");

OUTPUT("Enter Your Ship's Designation: example - DDG ");
INPUT(ShipFile.desig);
OUTPUT(" ");

OUTPUT("Enter Your Ship's Hull Number:");
INPUT(ShipFile.hullno);
OUTPUT(" ");

OUTPUT("Enter Your CO's name: example - Jones ");
INPUT(ShipFile.COname);
OUTPUTC(. ");

OUTPUT("Enter your CO's Rank: example - CDR ");
INPUT(ShipFile.COrank);
OUTPUT( C ");
OUTPTT("Enter Your XO's name: example - Door ");
INPUT(ShipFile.XOname);
OUTPUT(" ");
OUTPUT('Enter your XO's Rank: example - LCDR ");
INPUT(ShipFile.XOrank);
OUTPUT(" ");

OUTPUT("Enter Your Ship's Gunfire Control System: example - MK68");

79



INPUT(ShipFile.GFCS);
OUTPUT(" ");

OUTPUT("Enter Your Ship's Gunfire Control System Modification:
Example - 16");

INPUT(ShipFile.model);

OUTPUT;
OUTPUT("During this phase of data input you will be prompted for
data in the following order:");
OUTPUT("1. Acceleration rates by the number of seconds it takes the
ship to");
OUTPUT(" accelerate from the low end to the high end of the speed
range.");
OUTPUT;
OUTPUT("2. Deceleration rates by the number of seconds it takes the
ship to");
OUTPUT(" decelerate from the high end to the low end of the speed
range.");

OUTPUT;
OUTPUT("3. Change of heading by the number of seconds it takes the
ship to");
OUTPUT(" change heading from the low end to the high end of the
speed range.");
OUTPUT;

OUTPUT;
OUTPUT("Inputting ACCELERATION Data");
FOR i := 1 TO 6
OUTPUT;
OUTPUT("Input the number of seconds it takes to increase speed
from");
OUTPUT(i*5-5, " TO ",i*5);
INPUT(ShipFile.accel[i]);

END FOR;

OUTPUT;
OUTPUT("Inputting DECELERATION Data");
FOR i := 6 DOWNTO 1
OUTPUT;
OUTPUT("Input the number of seconds it takes to decrease speed
from");
OUTPUT(i*5, " TO ",i*5-5);
INPUT(ShipFile.decel[i]);

END FOR;

OUTPUT;
OUTPUT("Inputting Change of Heading Data");
FOR i 1 TO 3
FOR j 1 TO 3

FOR k := 1 TO 4
OUTPUT;
OUTPUT("Input the number of seconds it takes to change
ships head from");
OUTPUT(THead[k]-15, " TO ",THead[k],

degrees relative");

80



OUTPUT("At Speed ",TSpeedti), "Using "

TRudder[j2," degrees of rudder");
INPUT(ShipFile.turnrate[i](jI [ki)

END FOR;
END FOR;

END FOR;

NEW(ShipDataFile);
ASK ShipDataFile TO Open ("Ship.data',Output);

ASK ShipDataFile TO WriteString(ShipFile.name);
ASK ShipDataFile TO WriteLn;

ASK ShipDataFile TO WriteString(ShipFile.desig);
ASK ShipDataFile TO WriteLn;

ASK ShipDataFile TO WriteString(ShipFile.hullno);
ASK ShipDataFile TO WriteLn;

ASK ShipDataFile TO WriteString(ShipFile.COname);
ASK ShipDataFile TO WriteLn;

ASK ShipDataFile TO WriteString(ShipFile.COrank);
ASK ShipDataFile TO WriteLn;

ASK ShipDataFile TO WriteString(ShipFile.XOname);
ASK ShipDataFile TO WriteLn;

ASK ShipDataFile TO WriteString(ShipFile.XOrank);
ASK ShipDataFile TO WriteLn;

ASK ShipDataFile TO WriteString(ShipFile.GFCS);
ASK ShipDataFile TO WriteLn;

ASK ShipDataFile TO Writelnt(ShipFile.model, 4);
ASK ShipDataFile TO WriteLn;

CSbeach IG11
CSship "NAV1";

ShipAccuracy.range 50.0;
ShipAccuracy.deflection :=25.0;
SpotterBias.range 10.0;
Spotter~ias.deflection 5.0;

ASK ShipDataFile TO WriteString(CSbeach);
ASK ShipDataFile TO WriteLn;

ASK ShipDataFile TO WriteString(CSship);
ASK ShiprataFile TO WriteLn;

ASK ShipDataFile TO WriteReal(ShipAccuracy.range, 8, 4);
ASK ShipDataFile TO WriteLn;

ASK ShipDataFile TO WriteReal(ShipAccuracy.deflection, 8, 4);
ASK ShipDataFile TO WriteLn;

81



ASK ShipDataFile TO WriteReal(SpotterBias.range, 8, 4);
ASK ShipDataFile TO WriteLn;

ASK ShipDataFile TO WriteReal(SpotterBias.deflection, 8, 4);
ASK ShipDataFile TO WriteLn;

FOR i :=1 TO 6
ASK ShipDataFile TO WriteReal(ShipFile.accelti], 8, 4);
ASK ShipDataFile TO WriteLn;

END FOR;

FOR i :=1 TO 6
ASK ShipDataFile TO WriteReal(ShipFile.decel[i], 8, 4);
ASK ShipDataFile TO WriteLn;

END FOR;

FOR i :=1 TO 3 {speeds of 5, 15, 25
FOR j:= 1 TO 3 {rudder angles of 5, 15, 25

FOR k:= 1 TO 4 fhead change 0-15,15-30,30-45,45-601
ASK ShipDataFile TO WriteReal(ShipFile.turnratei] [j) tk),
8, 4);
ASK ShipDataFile TO WriteLn;

END FOR;
END FOR;

END FOR;

ASK ShipDataFile TO Close;
DISPOSE (ShipDataFile);

END PROCEDURE;

PROCEDURE Globallnit;

VAR
seedfile,
ShipDataFile StreamObj;

option,
i, j,k,
UpdateFile INTEGER;

FLAG CHAR;

BEGIN

NEW (ShipFile);
NEW (ShipAccuracy);
NEW (SpotterBias);
NEW(Rand);
NEW(ExData);

ASK ExData TO Open("Excercise.data", Output);

Xmax 50000.0;
Ymax 50000.0;

82



TSpeed'3] -5;
TRudder(0) -5;
FOR i :=1 TO 3
TSpeed(i) TSpeed[i-1J + 10;
TRudder~i) TRudderfi-1) + 10;
THead~i) THead[i-1) + 15;

END FOR;

T~iead[4J : THead[3] + 15;

IF FileExists("Ship.data") = FALSE
CreateShipDataFile;

ELSE
OUTPUT(I'Loading data, one moment please");

NEW(ShipDacaFile);
ASK ShipDataFile TO Open ("Ship.data",Input);

ASK ShipDataFile TO ReadString(ShipFile.name);
ASK ShipDataFile TO ReadString(ShipFile.desig);
ASK ShipDataFile TO ReadString(ShipFile.hullno);
ASK ShipDataFile TO ReadString(ShipFile.COname);
ASK ShipDataFile TO ReadString(ShipFile.COrank);
ASK ShipDataFile TO ReadString(ShipFile.XOname);
ASK ShipDataFile TO ReadString(ShipFile.XOrank);
ASK ShipDataFile TO ReadString(ShipFile.GFCS);
ASK ShipDataFile TO Readlnt(ShipFile.model);
ASK ShipDataFile TO ReadString(CSbeach);
ASK ShipDataFile TO ReadString(CSship);
ASK ShipDataFile To ReadReal (ShipAccuracy.range);
ASK ShipDataFile To ReaclReal(ShipAccuracy.deflection);
ASK ShipDataFile TO ReadReal(SpotterBias.range);
ASK ShipDataFile TO ReadReal (SpotterBias.deflection);

FOR i :=1 TO 6
ASK ShipDataFile TO ReadReal (ShipFile.accelti));

END FOR;

FOR i 1= TO 6
ASK ShipDataFile TO ReadReal(ShipFile.decel[il);

END FOR;

FOR i :=1 TO 3 (speeds of 5, 15, 25
FOR j:= 1 TO 3 (rudder angles of 5, 15, 251

FOR k:= 1 TO 4 (heading change 0-15, 15-30,

30-45, 45-601
ASK ShipDataFile TO ReadReal

(ShipFile.turnrate[iJ [ii[ki);
END FOR;

END FOR;
END FOR;

ASK ShipDataFile TO Close;
DISPOSE (ShipDataFile);

83



END IF;

END PROCEDURE;

END MODULE.

84



DEFINITION MODULE gui;

MODULE NAME: gui
AUTHOR: LT. WARREN A. MAZANEC
DATE WRITTEN: 12/7/91
LAST MODIFIED: 2/11/92

DESCRIPTION:

This is the definition module that creates and defines the graphic user
interface.

FROM Graphic IMPORT GraphicLibObj;
FROM IOMod IMPORT StreamObj, FileUseType(Input, Output), FileExists;
FROM GTypes IMPORT PointType;
FROM Form IMPORT DialogBoxObj;
FROM Menu IMPORT MenuBarObj, MenuObj, MenuItemObj;
FROM Window IMPORT WindowObj;
FROM Animate IMPORT DynImageObj, DynAClockObj, DynDClockObj;
FROM Button IMPORT ButtonObj;
FROM SimMod IMPORT StartSimulation;
FROM Value IMPORT ValueBoxObj;
FROM TextBox IMPORT TextBoxObj;
FROM Check IMPORT CheckBoxObj;
FROM Graph IMPORT RDataPtMObj, RDataPt, IDataPt;
FROM Meter IMPORT DigitalDisplayObj;

TYPE
menutype = OBJECT(MenuBarObj)
OVERRIDE

ASK METHOD BeSelec-
END OBJECT;

loiterObj = OBJECT(DynlmageD3)
TELL METHOD CREEP;

END OBJECT;

ShipObj = OBJECT(DynImageObj)
TELL METHOD ShowPosit;
TELL METHOD ChangeCourse;
TELL METHOD ChangeSpeed;

END OBJECT;

PROCEDURE InitMenuBar;
PROCEDURE InitGUI;
PROCEDURE ShipInit;
PROCEDURE UpdateShip;
PROCEDURE SetTheClock;

VAR

85



mbar menutype;

datawindow,
window WindowObj;

lib,zlib GraphicLibObj;

ship ShipObj;

clock,
timer DynDClockObj;

zbox, zscale,
zposit,
n udgebox,
dialogbox DialogBoxobj;

zboxbutton,
zscalebutton,
zpositbutton,
nudgebutton,
tempbutton,
button ButtonObj;

startitem,
stopitem,
pauseitem,
resumeitem,
paramitem,
zinitem,
nudgeitem,
zoutitem Menul-emObj;
menu MenuObj;

turtle loiterobj;

checkbox CheckBoxObj;

LatVal,
LonVal,
TimeVal,
SpeedVa 1,
Course Va 1,
RudderVal ValueBoxObj;

sysltxtbox,
sys2txtbox TextBoxObj;

temp,dx, dy,
Xposit,
yposit,
diat, dion,
dion2,
scalefactor REAL;

time, angle,

86



tsec, deltatime,
distance,
fixion, zion,
fixiat, ziat,
zxlo, zxhi,
zylo, zyhi,
zoomfactor,
nudgefactor REAL;

{monitored variables set by ship.Translation.x/y}
latdeg,
londeg,
latmin,
lonmin IDataPt;

latdecimalmin,
londecimalmin,
latsecs,
lonsecs RDataPt;

speed,
course,
rudder RDataPt;

oldcourse,
newcourse,
newspeed,
oldspeed REAL;

speeddial,
coursedial,
rudderdial,
latdial,
londial,
latdecrnindial,
londecmindial,
latmindial,
lonmindial,
latsecsdial,
lonsecsdial DigitalDisplayabj;

posit PointType;

MapFamily STRINGZ;

thr, tmin,
it,
system INTEGER;

END MODULE.

87



IMPLEMENTATION MODULE gui;

MODULE NAME: grui
AUTHOR: LT. WARREN A. MAZANEC
DATE WRITTEN: 12/7/91
LAST MODIFIED: 2/11/92

DESCRIPTION:

This is the module that creates and defines the graphic user interface.

FROM UtilMod IMPORT Delay, ClockRealSecs;
FROM GTypes IMPORT PointArrayType, LineStyleType(SolidLiie);
FROM Line IMPORT PolylineObj;
FROM IOMod IMPORT StrearnObj,FileUseType (Input);
FROM MathMod IMPORI ni, COS, SIN;
FROM StdScrn IMPORT Rcminder, Lines;
FROM Geo IMPORT DConvert;
FROM SimMod IMPORT StartSimulation, StopSimulation, Interrupt,

SimTime;
FROM Graph IMPORT RDataPtMObj, IDataPtMObj;
FROM Image IMPORT ImageObj;
FROM Global IMPORT ShipFile,TSpeeci,TRudder,THead;

OBJECT rnenutype;

ASK METHOD BeSelected; !Asynchronous menu handling routine)

VAR
rotateto : REAL;

BEGIN

NEW (dialogbox);
NEW(zbox);
NEW(nudgebox);
NEW(zscale);
NEW(zposit);
NEW (button);
NEW (nudgebutt on);
NEW(tempbutton);
NEW(zboxbutton);
NEW(zscalebutton);
NEW(zpositbutton);
NEW(SpeedVal);
NEW (CourseVal);
NEW(RudderVal);
NEW (LonVa1) ;
NEW (La tVal) ;
NEW(sysltxtbox);
NEW(sys2txtbox);

88



NEW(checkbox);
NEW(TimeVal);

CASE ASK LastPicked Id

WHEN 1: {COMMEX)

NEW(turtle);

ASK startitem TO Deactivate;
ASK stopitem TO Activate;
ASK pauseitem TO Activate;
ASK paramitem TO Activate;
ASK zinitem TO Activate;
ASK ship TO StartMotion;
ASK clock TO StartMotion;

TELL turtle TO CREEP;
TELL ship TO ShowPosit;

StartSimulation;
StopSimulation;
OUTPUT("execution has been halted");

WHEN 2: {STOr)
ASK pauseitem TO Deactivate;
ASK paramitem TO Deactivate;
HALT;

WHEN 3: (PAUSE)
ASK pauseitem TO Deactivate;
Interrupt (turtle, "CREEP");
Interrupt (ship, "ShowPosit");
ASK resumeiten TO Activate;

WHEN 4:
ASK ship TO StartMotion;
TELL turtle TO CREEP;
TELL ship TO ShowPosit;
ASK resurneitern TO Deactivate;
ASK pauseitem TO Activate;
StartSimulation;
StopSimulation;
OUTPUT("lexecution has been halted");

WHEN 5:
ASK dialogbox TO LoadFromLibrary(lib,"param");
ASK window TO AddGraphic(dialogbox);

SpeedVal :=ASK dialogbox Child("speed",O);
CourseVal :=ASK dialogbox Child("course",O);
RudderVal :ASK dialogbox Child("rudder",O);

oldcourse :=course;
oldspeed :=speed;

89



OUTPUT("old course is ", oldcourse);

ASK SpeedVal TO SetValue(speed);
ASK CourseVal TO SetValue(course);
ASK RudderVal TO SetValue(rudder);

ASK dialogbox TO Draw;

{get data from the dialog box)
button := ASK dialogbox TO AcceptInput();

IF ASK button ReferenceName = "okay"

SpeedVal := ASK dialogbox Child("speed",O);
CourseVal ASK dialogbox Child("course",0);
RudderVal := ASK dialogbox Child("rudder",O);

speed := ASK SpeedVal Valueo;
course ASK CourseVal Value(;
rudder ASK RudderVal Valueo;

TELL ship TO ChangeSpeed;
TELL ship TO ChangeCourse;

END IF;

WHEN 6:
(Zoom from a given location on the geo display.

2:1 zoom gives area 25,000 by 25,000 yards.
4:1 zoom gives area 12,500 by 12,500 yards.
Does not zoom outside world size of 50,000 yards an axis.
If a boundry will be encroached, the zoom backs off and
picks up the full 25,000 yards from opposite direction.

ASK zbox TO LoadFromLibrary(zlib,"zbox");
ASK zscale TO LoadFromLibrary(zlib,"zscale");
ASK zposit TO LoadFromLibrary(zlib,"zposit");

ASK window TO AddGraphic(zbox);
ASK zbox TO Draw;
ASK window TO AddGraphic(zscale);
ASK zscale TO Draw;

zscalebutton := ASK zscale TO AcceptInputo;

IF ASK zscalebutton ReferenceName = "zoom2x"
zoomfactor := 12500.0;

ELSE
zoomfactor := 6250.0;

END IF;

zboxbutton := ASK zbox TO AcceptInputo;

IF ASK zboxbutton ReferenceName = "PositZoom"

sysltxtbox := ASK zposit Child("line2",3);

90



sys2txtbox :- ASK zposit Child("line3",3);

IF system -1
ASK sys2txtbox TO SetHidden(TRUE);

ELSE
ASK sysitxtbox TO SetHidden(TRUE);

END IF;

ASK window TO AddGraphic(zposit);
ASK zposit TO Draw;

zpositbutton :=ASK zposit TO Acceptlnputo;

zxhi 50000.0;
zyhi 50000.0;

IF ASK zpositbutton ReferenceName=n enter"
LatVal ASK zposit Child("lat",3);
LonVal ASK zposit Child('lon",3);
ziat ASK LatVal Valueo;
zion :ASK LonVal Valueo;
zion ABS(DConvert(zlon,system) - dlon)*
scalefactor;
ziat :=ABS(DConvert(zlat,system) - diat)*
120000.0;
fresolve latitude, the y direction)

IF (ziat - zoomfactor) < 0.0
zylo 0.0;
zyhi zoomfactor*2.0;

ELSIF (ziat + zoomfactor) > 50000.0
zyhi 50000.0;
zylo zyhi - zoornfactor*2.0;

ELSE
zylo ziat - zoomfactor;
zyhi ziat + zoomfactor;

END IF;

(resolve longitude)

IF (zion - zoomfactor) < 0.0
zxlo 0.0;
zxhi zoomfactor*2.0;

ELSIF (zion + zoomfactor) > 50000.0
zxhi 50000.0;
zxlo :zyhi - zoomfactor*2.0;

ELSE
zxlo zion - zoomfactor;
zxhi :=zion + zoomfactor;

END IF;

END IF;

ELSE

ASK window To SetClickMonitoring(TRUE);

91



OUTPUT("Click Where You Want The Zoom
Centered");
OUTPUT("Press <Return> button when done");
INPUT (it);

ziat :-window.CickY;

ziat ziat * 1.8311;
zion window.ClickX;
zlon :=zion * 1.5259;

(resolve latitude, the y direction)

IF (ziat - zoomfactor) < 0.0
zylo :=0.0;
zyhi zoomfactor*2.0;

ELSIF (ziat + zoomfactor) > 50000.0
zyhi 50000.0;
zylo :-zyhi - zoomfactor*2.0;

ELSE
zylo ziat - zoomfactor;
zyhi ziat + zoomfactor;

END IF;

resolve longitude)

IF (zion - zoomfactor) < 0.0
zxlo :=0.0;
zxhi :=zoomfactor*2.0;

ELSIF (zion + zoomfactor) > 50000.0
zxhi 50000.0;
zxio zyhi - zoomfactor*2.0;

ELSE
zxlo zion - zoomfactor;
zxhi zion + zoomfactor;

END IF;
END IF;

ASK window TO Zoomln (zxio, zylo, zxhi, zyhi);
ASK zoutitem TO Activate;
ASK zinitem TO Deactivate;
ASK nudgeitem TO Activate;

WHEN 7:
ASK window TO Zoomln(0.0,0.0,50000.0,60000.0);
ASK zoutitem TO Deactivate;
ASK zinitem To Activate;
ASK nudgeiten TO Deactivate;

WHEN 8:
ASK nudgebox TO LoadFromLibrary (zlib, "nudge");
ASK window TO AddGraphic(nudgebox);
ASK nudgebox TO SetTranslation(10.0,10.0);
ASK nudgebox TO Draw;

(get input from the check boxes to determine Fine or Course nudge)

92



Course nudge = zoomfactor * 0.2 ie. 2500 or 1250 yard nudge

Fine nudge - zoomfactor * 0.1 ie. 1250 or 625 yard nudge

checkbox :=ASK nudgebox Child("fine",5);

nudgebutton :- ASK nudgebox TO AcceptInput 0;

WHILE ASK nudgebutton ReferenceName <> "done"

IF checkbox.Checked = TRUE
nudgefactor 0.1;

ELSE
nudgefactor 0.2;

END IF;

IF ASK nudgebutton ReferenceName = "left"
zxlo := zxlo-nudgefactor*zoomfactor;

IF zxlo < 0.0
zxlo 0.0;
zxhi zoomfactor*2.0;

ELSE
zxhi zxhi - nudgefactor*zoomfactor;

END IF;

ELSIF ASK nudgebutton ReferenceName = "right"
zxhi :=zxhi + nudgefactor * zoomfactor;

IF zxhi > 50000.0
zxlo 50000.0 - zoomfactor*2.0;
zxhi 50000.0;

ELSE
zxlo zxlo + nudgefactor*zoomfactor;

END IF;

ELSIF ASK nudgebutton ReferenceName = "up"

zyhi :=zyhi+nudgefactor*zoomfactor;

IF zyhi > 50000.0
zylo :50000.0 - zoomfactor * 2.0;
zyhi :=50000.0;

ELSE
zylo zylo+nudgefactor*zoomfactor;

END IF;

ELSIF ASK nudgebutton ReferenceName - "down"
zylo :- zylo - nudgefactor * zoomfactor;

IF zylo < 0.0
zylo :=0.0;
zyhi zoomfactor*2.0;

ELSE
zyhi zyhi -nudgefactor*

zoomfact or;
END IF;

93



END IF;

ASK window TO Zoomln (zxlo, zylo, zxhi, zyhi);

ASK nudgebox TO Draw;

nudgebutton :- ASK nudgebox TO Acceptlnputo;

END WHILE;

WHEN 9:
ASK dialogbox TO LoadFromLibrary(lib,"f ix"l);
ASK window TO AddGraphic(dialogbox);
ASK dialogbox TO Draw;

button :=ASK dialogbox TO Acceptlnputo;

IF ASK button ReferenceName -"enter"

LatVal :=ASK dialogbox Child("lat",6);
LonVal :ASK dialogbox Child("lon",6);
TimeVal :=ASK dialogbox Child("time", 6);

fixiat :=ASK LatVal Valueo;
fixion :ASK LonVal Valueo;
time :- ASK TimeVal Valueo;

xposit := ABS(DConvert(fixlon,system) - dion) *
scalef actor;
yposit := ABS(DConvert'(fixlat,system) - dlat) *
120000.0;

thr :TRIJNC(time/100.0);

time :time - FLOAT(thr)*100.0;
tmin :~TRUNC(time);
time time -FLOAT(tmin);

tsec :time *100.0;

tsec :=tsec + FLOAT(tmin)*60.0 + FLOAT (thr) *3600.0;

time :=SimTime;
deltatime time - tsec;
distance :=deltatime * speed * 5.0/9.0;
angle :=-1.0 * (course - 90.0) *pi/18O.0;
dx COS (angle) *distance;
dy :=SIN(angle)*distance;
xposit :=xposit + dx;
yposit :yposit + dy;

ASK ship TO SetTranslation (xposit,yposit);

END IF;

OTHERWI SE

END CASE;

94



END METHOD;

END OBJECT;

OBJECT loiterObj;

TELL METHOD CREEP;

BEGIN

Set TheClock;

WAIT DURATION 70000.0; {wait 20 hours)

ON INTERRUPT

END WAIT;

END METHOD;

END OBJECT;

OBJECT ShipObj;

TELL METHOD ShowPosit;

VAR
templat,
templon REAL;

i INTEGER;

BEGIN

LOOP
(monitored variables set by ship.Translation.x/y
{latdeg,londeg,latmin,lonin IDataPt
(latdecimalmin, londecimalmin, latsecs, lonsecs RDataPt

ternplat ship.Translation.y / 2000.0;
{convert yards to minutes of latitude)

templat templat/60.0;
( convert minutes to decimal degrees

templat dlat + ternplat;
latdeg :=TRUNC(templat);
latdecimalmin :=(templat - FLOAT(latdeg)) * 60.0;

templon ship.Translation.xlscalefactor;
templon :=dlon - templon;
londeg TRUNC(templon);
londecimalmin :=(templon - FLOAT(lorxdeg))*60.0;

95



IF system = 1 {need to convert minutes into seconds)

latmin TRUNC(latdecimalmin);
latsecs := (latdecimalmin - FLOAT(latmin)) * 60.0;
lonmin := TRUNC(londecimalmin);
lonsecs (londecimalmin - FLOAT(lonmin)) * 60.0;

END IF;

(updates ship posit every x number of seconds
{chose 5 seconds as a reasonable number and not to bog down
{the computer with too many updates that wouldn't be used

WAIT DURATION 5.0;

ON INTERRUPT
EXIT;

END WAIT;

END LOOP;

END METHOD;

TELL METHOD ChangeSpeed;

VAR
direction,
tempspeed,
incrspeed REAL;

rotateto REAL;

BEGIN
direction speed - oldspeed;
tempspeed speed;
speed oldspeed;

(speed is the monitored value, so to keep updated speed
(displayed, speed must be the changing variable in the method)

IF direction > 0.0 (ship is accelerating)

WAIT DURATION 5.0;
ON INTERRUPT
END WAIT;

WHILE speed < tempspeed

IF speed < 5.0
incrspeed := 5.0/ShipFile.accel[l];
(increased by kts/sec)

ELSIF speed < 10.0
incrspeed := 5.0/ShipFile.accel[2];
(increased by kts/sec)

ELSIF speed < 15.0

96



incrspeed :=5.0/ShipFile.accel[3];
(increased by kts/sec)

ELSIF speed < 20.0
incrspeed :=5.0/ShipFi-le.accel [4);
(increased by ktslsecl

ELSIF speed < 25.0
incrspeed :=5.0/ShipFile.acceli5J;
(increased by kts/secl

ELSE
incrspeed :=5.0/ShipFile.accel[6J;
(increased by kts/sec)

END IF;

speed :=speed + incrspeed*5.0;
(update for 5 second interval}

ASK ship TO SetSpeed(speed*5.0/9.0);

WAIT DURATION 5.0;
ON INTERRUPT
END WAIT;

END WHILE;

speed :=tempspeed;
ASK ship TO SetSpeed(speed*5.0/9.0);

ELSE

WAIT DURATION 5.0;
ON INTERRUPT
END WAIT;

WHILE speed > tempspeed

IF speed < 5.0
incrspeed :=5.0/ShipFile.decel[1);
(increased by kts/secl

ELSIF speed < 10.0
incrspeed :=5.0/ShipFile.decel[2);
(increased by kts/sec!

ELSIF speed < 15.0
incrspeed :=5.0/ShipFile.aecel[3);
(increased by kts/sec)

ELSIF speed < 20.0
incrspeed :- 5.0/ShipFile.decel[4);
(increased by kis/sec)

ELSIF speed < 25.0
incrspeed :=5.0/ShipFile.decel(5);
(increased by kts/sec)

ELSE
incrspeed := 5.0/ShipFile.decel(6);
(increased by kts/sec)

END IF;

speed :=speed - incrspeed*5.0;
(update for 5 second interval)

ASK ship TO SetSpeed(speed*5.0/9.0);

97



WAIT DURATION 5.0;
ON INTERRUPT
END WAIT;

END WHILE;

speed := tempspeed;
ASK ship TO SetSpeed(speed*5.0/9.0);

END IF;

IF direction = 0.0
ELSE
ASK window TO Beep;
OUTPUT("At ordered speed");

END IF;

END METHOD;

TELL METHOD ChangeCourse;

VAR
i,j,k INTEGER;

rotateto,
sumchange,
tempcourse,
incrchange,
totchange REAL;

BEGIN

OUTPUT("old course is ",oldcourse);
OUTPUT("new course is ",course);
OUTPUT("x ",ship.Translation.x);
OUTPUT("y ",ship.Translation.y);

IF rudder < 0.0 {turning with left rudder)
IF course < oldcourse

totchange oldcourse - course;
ELSE

totchange oldcourse + (360.0 - course);
END IF;

ELSE (turning with right rudder)
IF course < oldcourse

totchange course + (360.0 - oldcourse);
ELSE

totchange := course - oldcourse;
END IF;

END IF;

tempcourse := course; { final stop value
course := oldcourse;

WAIT DURATION 5.0;
ON INTERRUPT

98



END WAIT;

WHILE sumchange < totchangs

IF speed < 10.0
i: =1;

ELSIF speed < 20.0
i 2;

ELSE
1 3;

END IF;

IF ABS(rudder) < 10.0
j :=1;

ELSIF ABS(rudder) < 20.0
j 2;

ELSE
j 3;

END IF;

IF totchange < 15.0
k :=1;

ELSIF totchange < 30.0
k :=2;

ELSIF totchange < 45.0
k 3;

ELSE
k 4;

END IF;

incrchange 15.0/ShipFile.turnrate[i) [jJ [k];
sumcharige sumchange + incrchange;

IF rudder < 0.0
course :=course - incrchange;
IF course < 0.0

course :=360.0 + course;
END IF;

ELSE
course :=course + incrchange;
IF course >= 360.0;

course course -360.0;

END IF;
END IF;

rotateto :=-1.0 *(course -90.0) *pi /180.0;

ASK ship TO SetAutoRotation(TRUE);
ASK ship TO SetCourse(rotateto);
ASK ship TO SetRotation(rotateto);

WAIT DURATION 1.0;
ON INTERRUPT
END WAIT;

99



END WHILE;

WAIT DURATION 4.0;
ON INTERRUPT
END WAIT;

course :=tempcourse; {final stop value I
rotateto :=-1.0 * (course - 90.0) *Pi I180.0;

ASK ship TO SetAutoRotation(TRUE);
ASK ship TO SetCourse(rotateto);
ASK ship TO SetRotation(rotateto);

IF totchange = 0.0
ELSE
ASK window TO Beep;
OUTPUT("On ordered course");

END IF;
OUTPUT("1x "l,ship.Translation.x);
OUTPUT("y ",ship.Translation.y);
rudder :=0.0;

END METHOD;

END OBJECT;

PROCEDURE Shiplnit;

VAR
shoreline . ARRAY INTEGER OF Polylineobj;

TheFile,
shorefile . STRING;

InFile . StreamObj;

ctr,
numberOf Images,
dummy,
1,),

nurnpoints - INTEGER;

temp,. REAL;

shorepts . ARRAY INTEGER OF PointArrayType;

shorectr . ARRAY INTEGER OF INTEGER;

maps . ARRAY INTEGER OF STRING;

map file,
datafile . StreamObj;

100



lattext,
lontext ImageObj;

BEGIN

NEW (window);
ASK window TO SetTitle("Cylon Spotter Geographical Display");
ASK window TO SetSize(50.0, 50.0);
ASK window TO SetTranslation(50.0,50.0);
ASK window TO ShowWorld(O.0,O.O,50000.O,50000.O);
ASK window TO Draw;

NEW(datawindow);
ASK datawindow TO SetTitle("Data Display");
ASK datawindow TO SetSize(40.0, 40.0);
ASK datawindow TO SetTranslation(10.0, 10.0);
ASK datawindow TO ShowWorld(0.0,0.0,100.0,100.0);
ASK datawindow TO Draw;

NEW(lib);
ASK 1iL TO ReadFrornFile("Gui.lib");

NEW(zlib);
ASK zlib TO ReadFromFile("zoom.lib");

NEW (ship);
ASK ship TO LoadFromLibrary(lib,"ship");

NEW (clock);
ASK clock TO LoadFromLibrary(zlib,"extime");
ASK clock TO SetTimeScale(1.0/3600.0);
ASK clock TO SetTranslation(10.0,85.0);

NEW (timer);
ASK timer TO LoadFromtibrary(zlib,"tiner");
ASK timer TO SetTranslation(55.0,85.0);

ASK window TO AddGraphic (ship);
ASK datawindow TO AddGraphic(clock);
ASK datawindow TO AddGraphic(timer);
ASK ship To Scale(0.2,0.2);
ASK clock TO Scale(0.35,0.15);
ASK timer TO Scale(0.35,0.15);
ASK clock TO Draw;
ASK timer TO Draw;

NEW(speeddial);
NEW(coursedial);
NEW(rudderdial);
NEW (latdial) ;
NEW(londial);
NEW(lattext);
NEW(lontext);

ASK speeddial TO LoadFromLibrary(lib, "speeddisplay");

101



ASK coursedial TO LoadFromLibrary(lib, "coursedisplay");
ASK rudderdial TO LoadFromLibrary(lib, "rudderdisplay");
ASK latdial TO LoadFromLibrary(lib, "latdeg");
ASK londial TO LoadFrornLibrary(lib, "londeg");
ASK lattext TO LoadFromLibrary(lib, "lattext");
ASK lontext TO LoadFrornLibrary(lib, "lontext");

ASK speeddial TO SetTranslat'on(5.0, 65.0);
ASK datawindow TO AddGraphic(speeddial);
ASK speeddial TO Draw;

ASK coursedia. TO SetTranslation(37.5, 65.0);
ASK datawindow TO AddGraphic(coursedial);
ASK coursedial TO Draw;

ASK rudderdial TO SetTranslation(70.O, 65.0);
ASK datawindow TO AddGraphic(rudderdial);
ASK rudderdial TO Draw;

ASK latdial TO SetTranslation(10.0, 32.5);
ASK datawindow TO AddGraphic(latdial);
ASK latdial TO Draw;

ASK londial TO SetTranslation(1O.0, 1.0);
ASK datawindow TO AddGraphic(londial);
ASK londial TO Draw;

ASK lattext TO SetTranslation(45.0, 55.0);
ASK datawindow TO AddGraphic(lattext);
ASK lattext TO Draw;

ASK lontext TO SetTranslation(45.0, 23.5);
ASK datawindow TO AddGraphic (lontext);
ASK lontext TO Draw;

ASK GETMONITOR(speed, RDataPtMObj) TO SetGraph(speeddial);
ASK GETMONITOR(course, RDataPtMObj) TO SetGraph (coursedial);
ASK GETMONITOR(rudder, RDataPtMObj) TO SetGraph(rudderdial);
ASK GETMONITOR(londeg, IDataPtMObj) TO SetGraph(londial);
ASK GETMONITOR(latdeg, IDataPtMObj) TO SetGraph(latdial);

NEWJ(mapfile);
ASK mapfile TO Open("'map.lis", Input);
ASK mapfile TO Readlnt(i);
NEW(maps, 1. .i);
FOR j:= 1 TO i
ASK mapfile TO ReadString(maps[jJ);

END FOR;

Lines (2);
OUTPUT("Input the number of the Map Family for this Excercise");
Lines (1)

102



FOR j :=1 TO i
OUTPUT(j,". ",maps~jJ);

END FOR;
INPUT(j);
WHILE j>i
Lines (2);
OUTPUT("The number you have entered is Inconsistent with the Map
listing.");

a OUTPUT("Try again");
Lines (2);
FOR j:= 1 TO i

OUTPUT(j,'-. "1,maps[jJ);
END FOR;
INPUT (j);

END WHILE;

MapFamily :=maps[jJ;

TheFile :=MapFamily + ".data";
NEW (datafile);
ASK datafile To Open(TheFile,Input);
ASK datafile TO Readlnt (system);
ASK datafile To Close;
DISPOSE (datafile);

IF system = 2
NEW (latdecmindial);
NEW (londecmindia 1);

ASK latdecrnindial TO LoadFromLibrary(lib, "latdecmin");
ASK londecmindial TO LoadFromLibrary(lib, "londecmin");

ASK latdecmindial TO SetTranslation(40.0, 32.5);
ASK datawindow TO AddGraphic(latdecmindial);
ASK latdecmindial TO Draw;

ASK londecmindial TO SetTranslation(40.O, 1.0);
ASK datawindow TO AddGraphic(londecmindial);
ASK londecmindial TO Draw;

ASK GETMONITOR(londecimalmin, RDataPtMObj) TO SetGraph
(londecmindial);
ASK GETMONITOR(latdecimalmin, RflataPtMObj) TO SetGraph
(latdecmindial);

ELSE
NEW(latmindial);
NEW(lonmindial);
NEW(latsecsdial);
NEW(lonsecsdial);

Iminutes I
ASK latmindial TO LoadFromLibrary(lib, "latmin");
ASK lonmindial TO LoadFromLibrary(lib, "lonmin");

ASK latmindial TO SetTranslation(40.0, 32.5);

103



ASK datawindow TO AddGraphic(latmindial);
ASK latmindial TO Draw;

ASK lonmindial TO SetTranslation(40.O, 1.0);
ASK datawindow TO AddGraphic(lormindial);
ASK lonindial TO Draw;

ASK GETMONITOR(lonmin, IDataPtMObj) TO SetGraph(lonxnindial);
ASK GETMONITOR~iatmin, IDataPtMObj) TO SetGraph(latmindial);

I secondsl
ASK latsecsdial TO LoadFrornLibrary(lib, I"latsecs");
ASK lonsecsdial To LoadFromLibrary(lib, "lonsecs");

ASK latsecsdial TO SetTranslation(80.0, 32.5);
ASK datawindow TO AddGraphic(latsecsdial);
ASK latsecsdial TO Draw;

ASK lonsecsdial TO SetTranslation(80.0, 1.0);
ASK datawindow TO AddGraphic (lonsecsdial);
ASK lonsecsdial TO Draw;

ASK GETMONITOR(lonsecs, RDataPtMObj) TO SetGraph(lonsecsdial);
ASK GETMONITOR(latsecs, RDataPtMObj) TO SetGraph (latsecsdial);

END IF;

NEW(InFile);
shorefile :=MapFamily + ".shore";
ASK InFile TO Open(shorefile, Input);
ASK InFile TO Readlnt(numberOf Images);
ASK InFile TO Readlnt (duinny);

NEW(shorectr, 0. .nuniberOf Images);
i :=1;
WHILE i <= nuxnberOf Images
ASK InFile TO ReadInt(shorectr~il);
i :=+i1;

END WHILE;

NEW(shorepts, 0..nuxnberOf Images);
i :=1;
WHILE i <= nuxnberOf Images
NEW(shorepts[i), 1..shorectr~iD);
i . i + 1

END WHILE;

i :=1;
WHILE i <= nuimberOf Images
j :=1;
WHILE j <= shorectr(iJ

ASK InFile TO ReadReal (shorepts [il [ii.x);
ASK InFile TO ReadReal(shorepts[i](j]i.y);
ASK InFile TO ReadReal(temp);
ASK InFile TO ReadReal(temp);
j := j + 1;

104



END WHILE;
1 := i +1;

END WHILE;

i :=1;
NEW(shoreline, O..numberOflmages);
WHILE i <= numberOf Images

NEW (shoreline [ii);
1 :- i+l;

END WHILE;

i 1
WHILE i <= numberOf Images
OUTPUT("Adding image number ",i);
ASK shoreline~i] TO SetPoints (shorepts [iJ);
ASK shorelinefi) TO SetWidth(50.O);
ASK shoreline~i] TO SetStyle(SolidLine);

ASK window TO AddGraphic (shoreline [i]);
ASK shoreline[i] TO Draw;

i : i+l;
END WHILE;

ASK InFile TO Close;
DISPOSE(InFile);

END PROCEDURE;

PROCEDURE InitMenuBar;

BEGIN

NEW(rnbar);
ASK mbar TO LoadFromLibrary(lib, "menubar");
ASK window TO AddGraphic(rnbar);
ASK mbar TO Draw:

startitem ASK mbar Descendant("start"l,l);
stopitem ASK mbar Descendant ("stop",2);
pauseitem ASK mbar Descendant("lpause",3);
resumeitem ASK mbar Descendant("resume",4);
paramitem ASK mnbar Descendant("shipparam",5);
zinitem ASK mibar Descendant("zin",6);
zoutitem ASK mibar Descendant("zout",7);
nudgeitem ASK mnbar Descendant ("nudge",8);

ASK stopitem TO Deactivate;
ASK pauseitem TO Deactivate;
ASK resumeitem TO Deactivate;
ASK paramitem TO Deactivate;
ASK zinitem TO Deactivate;
ASK zoutitem TO Deactivate;

105



ASK nudgeitem TO Deactivate;

END PROCEDURE;

PROCEDURE InitGUI;

VAR
datafile StreamObj;

infile STRING;

BEGIN

NEW(dialogbox);
ASK dialogbox TO LoadFronLLibrary(lib,"param");
ASK window TO AddGraphic(dialogbox);

ASK dialogbox TO SetLabel ("Initial Parameters");
ASK dialogbox TO Draw;

(get data from the dialog box)
button :=ASK dialogbox TO AcceptInputo(;

IF ASK button ReferenceName = "okay"

SpeedVal ASK dialogbox Child("speed",O);
CourseVal ASK dialogbox Child("course",O);
RudderVal ASK dialogbox Child("rudder",O);

speed ASK SpeedVal Valueo;
course ASK CourseVal Value();
rudder ASK RudderVal Valueo;
oldspeed speed;
oldcourse course;

END IF;

infile :=MapFamily + ".data";
NEW (datafile);
ASK datafile TO Open(infileInput);
ASK datafile TO Readlnt(system);
ASK datafile TO ReadReal (temp);
ASK datafile To ReadReal(temp);
ASK datafile TO ReadReal(temp);
ASK datafile To ReadReal(dlat);
ASK datafile TO ReadReal(dlon);
ASK datafile TO ReadReal(dlon2);
ASK datafile To ReadReal (scalefactor);
ASK datafile TO Close;
DISPOSE (datafile);

OUTPUT("'Input the Ship's Starting Latitude");
Reminder (system);
INPUT(yposit);

106



OUTPUT("lInput the Ship's Starting Longitude");
Reminder (system);
INPUT(xposit);

xposit ABS(DConvert(xposit,system) - dlon)*scalefactor;
yposit :=ABS CDConvert(yposit,system) - dlat)*120000.0;

ASK ship TO SetTranslation(xposit,yposit);
ASK ship TO Draw;
Update Ship;
DISPOSE (dialogbox);

END PROCEDURE;

PROCEDURE UpdateShip;

VAR
rotateto REAL;

BEGIN

ASK ship TO StopMotion;

rotateto :=-1.0 * (course - 90.0) *pi I180.0;

ASK ship TO SetAutoRotation(TRUE);
ASK ship TO SetCourse(rotateto);
ASK ship TO SetSpeed(speed*5.019.0);
ASK ship TO SetRotation(rotateto);
ASK ship TO StartMotion;

END PROCEDURE;

PROCEDURE SetTheClock;

VAR
temp,
thr,tmin,tsec REAL;

i, j,
hr, min, sec INTEGER;

BEGIN

temp ClockRealSecs;
thr ternp/(3600.0*24.0);
i :=TRUNC(thr);
thr :temp - FLOAT(i)*86400.0;
hr TRUNC(thrI3600.0);
tsec thr - FLOAT(hr)*3600.0;
min TRUNC(tsec/60.0);
sec TRUNC(tsec - FLOAT(min)*60.0);

107



ASK clock TO SetTime(hr, min, sec);
ASK clock TO Update;

END PROCEDURE;

END MODULE.

108



DEFINITION MODULE Plan;

MODULE NAME: Plan
AUTHOR: LT. WARREN A. MAZANEC
DATE WRITTEN: 11/27/91
LAST MODIFIED: 2/16/92

DESCRIPTION:

This is the definition module that plans future exercises and generates
target lists.

- - - - - - - - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - -- -

PROCEDURE PlanEx;
PROCEDURE CreateTgtList(IN map : STRING; IN ex : STRING);

END MODULE.

109



IMPLEMENTATION MODULE Plan;

MODULE NAME: Plan
AUTHOR: LT. WARREN A. MAZANEC
DATE WRITTEN: 11/27/91
LAST MODIFIED: 2/16/92

DESCRIPTION:

This is the module that plans future exercises and generates target
lists.

FROM StdScrn IMPORT Screen, Lines;
FROM IOMod IMPORT FileUseType(Input,Output),StreamObj, FileExists;
FROM Geo IMPORT CreateGeoDisplay, MapFamily;
FROM UtilMod IMPORT DateTime;
FROM Global IMPORT TargetRecType;

VAR
i,j,
numex,
temp, templ,
temp2,temp3,
MoreFlag,
scenario : INTEGER;

StopFlag : STRING;

overwrite,
exname,
commex STRING;

mapfile,
ex,
outl StreamObj;

drill,
maps ARRAY INTEGER OF STRING;

PROCEDURE PlanEx;

BEGIN
{ open listing of pre-existing excercise files }
NEW(outl);
OUTPUT("The Following Excercises Are Already Named");
OUTPUT;
IF FileExists("EX.list") = TRUE
ASK outl TO Open("EX.list", Input);
ASK outl TO ReadInt(numex);

(read the list in to an array }
IF numex > 0

110



NEW(drill, l..numex);
FOR i:= 1 TO numex

ASK outl TO ReadString(drill[i]);
OUTPUT(" ",drill(i]);

END FOR;
END IF;

ELSE
OUTPUT("No Excercise Files Currently Exist");
ASK outl TO Open("EX.list", Output);
numex := 0;

END IF;
ASK outl TO Close;

f get name of new excercise
OUTPUT("Input The Name Of The Excercise You Wish To Create");
OUTPUT("Re-use of previously named file will cause that data to be
lost. " ) ;
OUTPUT;
OUTPUT("NOTE: Keep the name to under 8 characters to prevent ");
OUTPUT(" conflicts with the operating system.");
INPUT (commex) ;

StopFlag := "N";
FOR i := 1 TO numex
IF drill[i] = conmmex

StopFlag
END IF;

END FOR;

{ storing the new excercise on the list, if not over-written }
IF StopFlag = "N"
ASK outl TO Open("EX.list", Output);
ASK outl TO WriteInt(numex+1,3);
ASK outl TO WriteLn;
FOR i := 1 TO numex

ASK outl TO WriteString(drill[i]);
ASK outl TO WriteLn;

END FOR;
ASK outl TO WriteString(commex);
ASK outl TO WriteLn;
ASK outl TO Close;

END IF;
DISPOSE(outl);

f opening the file to contain the excercise script )
exname := commex;
NEW(ex);
commex := commex + ".ex";
ASK ex TO Open(commex, Output);

( opening the file that contains the geographic maps }
NEW(mapfile);
ASK mapfile TO Open("map.lis", Input);
ASK mapfile TO ReadInt(i);
NEW(maps, l..i);
FOR j:= 1 TO i

111



ASK mapfile TO ReadString(mapslj));
END FOR;

Lines (2);
OUTPUT("Input the number of the Map Family for this Excercise");
Lines ();

FOR j := 1 TO i
OUTPUT(j,". ",maps[j]);

END FOR;
OUTPUT(i+l,". Create New Geographic Display Chart.");
INPUT(j);
WHILE (j>i+l) OR (j < 0)
Lines(2);
OUTPUT("The number you have entered is Inconsistent with the

Map listing.");
OUTPUT("Try again");
Lines(2);
FOR j:= 1 TO i

OUTPUT(j,.. ",mapsfj]);
END FOR;
OUTPUT(i+1,". Create New Geographic Display Chart.");
INPUT (j);

END WHILE;
ASK mapfile TO Close;

IF j = i+l
CreateGeoDisplay;
ASK mapfile TO Open("map.lis", Output);
ASK mapfile TO WriteInt(i+1,3);
ASK mapfile TO WriteLn;

FOR j := 1 TO i
ASK mapfile TO WriteString(maps[j]);
ASK mapfile TO WriteLn;

END FOR;
ASK mapfile TO WriteString(MapFamily);
ASK mapfile TO WriteLn;
ASK mapfile TO Close;
DISPOSE(mapfile);

ELSE
MapFamily := maps[jl;

END IF;

ASK ex TO WriteString(MapFamily);
ASK ex TO WriteLn;

MoreFlag := 1;

WHILE MoreFlag > 0

OUTPUT("THESE OPTIONS ARE TO ASSST IN THE PREPARATION OF");
OUTPUT(" AN NGFS EXCERCISE.");
OUTPUT("");

112



OUTPUT(" 1. Point Fire Excercise");
OUTPUT(" 2. Area Fire Excercise");
OUTPUT(" 3. Coordinated Illumination Excercise");
OUTPUT(" 4. Z-40-G");
OUTPUT(" 5. Z-42-G");
OUTPUT(" 6. Z-43-G");
OUTPUT(" 7. Z-44-G");
OUTPUT(" 8. Z-45-G");
OUTPUT(" 9. Exit");
OUTPUT( " " );
Screen (1) ;
INPUT (scenario);
Lines (2);

CASE scenario
WHEN 1:

OUTPUT("INPUT the number of salvos to be fired for this
Point Fire excercise");
INPUT (temp) ;
ASK ex TO WriteInt(scenario, 3);
ASK ex TO WriteLn;
ASK ex TO WriteInt(temp, 3);
ASK ex TO WriteLn;
MoreFlag := 0;
Lines (3);

WHEN 2:

OUTPUT("INPUT the number of salvos to be fired for this
Area Fire excercise");
INPUT (temp);
ASK ex TO WriteInt(scenario, 3);
ASK ex TO WriteLn;
ASK ex TO WriteInt(temp, 3);
ASK ex TO WriteLn;
MoreFlag := 0;

Lines (3);

WHEN 3..8:

MoreFlag := 0;

OTHERWISE
MoreFlag := 0;

END CASE;

MoreFlag := 0;

scenario := 9;
Lines (2);
OUTPUT("Another Menu Selection? < Y/N >");
OUTPUT;
INPUT (StopFlag);
IF (StopFlag = "Y") OR (StopFlag = "y")

MoreFlag := 1;
END IF;
Lines (2);

END WHILE;

113



Screen (5);
INPUT (temp);
Lines (5) ;
OUTPUT("An excrecise target list will be generated and stored in a
file ");

OUTPUT("called ExTgt.list. Print this list prior to commencing the
excercise"l);
OUTPUT("lto allow the plots a chance to create an excercise
chart.");
OUTPUT("ITHIS IS REQUIRED BY THE CYLON SPOTTER");
Lines (2);
CreateTgtList (MapFamily, exname);
Screen (5);
INPUT (scenario);

ASK ex TO Close;
DISPOSE (ex);

END PROCEDURE;

PROCEDURE CreateTgtList(IN map :STRING; IN ex :STRING);

CONST
format **** *** ** ****** ** **

format2 "

format3 "**** ***** *** *

VAR
infile,
outfile : StreamObj;

target ARRAY INTEGER OF TargetRecType;

str,

mapfile STRING;

i, J,
numtgts INTEGER;

BEGIN
mapfile :=ex + "Tgt.lis";
NEW(outfile);
ASK outfile TO Open(mapfile, Output);

ASK outfile TO WriteString (n TARGET LIST FOR
EXCERCISE ");
ASK outfile TO WriteString(ex);
ASK outfile TO WriteLn;
ASK outfile TO WriteLn;
ASK outfile TO WriteString (nCreated on )
DateTime (str) ;
ASK outfile TO WriteString(str);
ASK outfile TO WriteString("1 Using Map File:")

114



ASK outfile TO WriteString(map);
ASK outfile TO WriteLn;
ASK outfile TO WriteLn;
ASK outfile To WriteLn;

ASK outfile TO WriteString(" AREA TARGET LIST
DATA");
ASK outfile TO WriteLn;
ASK outfile TO WriteLn;

NEW(infile);
mapfile :=map + ".atgt";
ASK infile TO Open(mapfile,Input);
ASK infile TO Readlnt(nuxntgts);
ASK outfile TO WriteString("l Tgt ID Latitude Longitude
Width Length Quantity");
ASK outfile To WriteLn;
NEW(target, 1..nuxntgts);
FOR i :=1 TO numtgts

NEW (target [ i );
ASK infile TO ReadString(target~i] .tgtID);
ASK infile TO ReadReal(target(i].x);
ASK infile TO ReadReal(target[iJ.y);
ASK infile TO ReadReal(target[iJ.lat);
ASK infile TO ReadReal(target[i].lon);
ASK infile TO ReadString(target[i].type);
ASK infile TO ReadString(target~i].protection);
ASK infile To Readlnt(target~il.width);
ASK infile TO Readlnt(target[i].length);
ASK infile TO ReadString (target [iJ .quantity);

END FOR;
ASK infile TO Close;

FOR i 1 TO nuxntgts
str SPRINT (target[i) .tgtID, target[iJ .lat, target~i] .lon,

target[i) .width, target~i] .length, target~i) .quantity) WITH
format;
ASK outfile TO WriteString(str);
ASK outfile TO WriteLn;

END FOR;
ASK outfile TO WriteLn;
ASK outfile TO WriteLn;
ASK outfile TO WriteLn;
ASK outfile TO WriteLn;
ASK outfile TO WriteString(" AREA TARGET LIST
DESCRIPTION");
ASK outfile To WriteLn;
ASK outfile TO WriteLn;
ASK outfile TO WriteString(" Tgt ID Target Type
Protection");
ASK outfile TO WriteLn;

FOR i :=1 TO nurntgts

115



str :=SPRINT (target[i].tgtlD, target[i).type,
target [i].protection) WITH format2;
ASK outfile TO WriteString(str);
ASK outfile TO WriteLn;

END FOR;

ASK outfile TO WriteLn;
ASK outfile TO WriteLn;
ASK outfile TO WriteLn;
ASK outfile TO WriteLn;

ASK outfile TO WriteString("l POINT TARGET LIST
DATA");
ASK outfile TO WriteLn;
ASK outfile TO WriteLn;

NEW(infile);
mapfile :=map + "1.ptgt"l;
ASK infile TO Open(mapfile,Input);
ASK infile To Readlnt(numtgts);
ASK outfile TO WriteString("1 Tgt ID Latitude Longitude
Quantity");
ASK outfile TO WriteLn;
NEW(target, l..nurntgts);
FOR i :=1 TO nuxntgts

NEW (target [i)I);
ASK infile TO ReadString (target [i] .tgtID);
ASK infile TO ReadReal(target~ilhx);
ASK irifile TO ReadReal(target[i].y);
ASK infile TO ReadReal(target[iJ.lat);
ASK infile TO ReadReal(target[iJ.lon);
ASK infile TO ReadString(target~iJ.type);
ASK infile TO ReadString(target [iJ .protection);
ASK infile TO ReadString (target [i).quantity);

END FOR;
ASK infile To Close;

FOR i 1 TO nuxntgts
str SPRINT (target~i).tgtID, target(i).lat, target~iJ.lon,

target [ii .quantity) WITH format3;
ASK outfile TO WriteString(str);
ASK outfile TO WriteLn;

END FOR;
ASK outfile TO WriteLn;
ASK outfile TO WriteLn;
ASK outtile TO WriteLn;
ASK outfile TO WriteLn;
ASK outfile TO WriteString(" POINT TARGET LIST
DESCRIPTION");
ASK outfile TO WriteLn;
ASK outfile TO WriteLn;
ASK outfile TO WriteString("1 Tgt ID Target Type
Protection");
ASK outfile TO WriteLn;

116



FOR i :1 TO numtgts
str SPRINT (target(i).tgtlD, target~il.type,

target(iJ.protection) WITH format2;
ASK outfile TO WriteString(str);
ASK outfile TO WriteLn;

END FOR;

ASK outfile TO WriteLn;
ASK outfile TO WriteLn;
ASK outfile TO WriteLn;
ASK outfile TO WriteLn;

ASK outfile TO Close;
DISPOSE (outfile);

END PROCEDURE;

END MODULE.

117



DEFINITION MODULE PointSpot;

MODULE NAME: PointSpot
AUTHOR: LT. WARREN A. MAZANEC
DATE WRITTEN: 11/27/91
LAST MODIFIED: 2/17/92

DESCRIPTION:

This is the definition module that controls the spotting for point
targets.

FROM Spotter IMPORT SpotterObj;
FROM Global IMPORT TargetRecType, AimPt;

TYPE
PointSpotObj = OBJECT(SpotterObj);
ASK METHOD Prosecute(IN SALVOS : INTEGER; IN mapfamily

STRING);
ASK METHOD GetPointTgt(IN mapfamily : STRING);

END OBJECT;

VAR
PSpotter : PointSpotObj;
tgtl : ARRAY INTEGER OF TargetRecType;
numtgts : INTEGER;

END MODULE.

118



IMPLEMENTATION MODULE PointSpot;

MODULE NAME: PointSpot
AUTHOR: LT. WARREN A. MAZANEC
DATE WRITTEN: 11/27/91
LAST MODIFIED: 2/17/92

DESCRIPTION:

This is the module that controls the spotting for point targets.

FROM IOMod IMPORT StreamObj, FileUseType(Input, Output);
FROM Global IMPORT TargetRecType, FirstTarget, AimType, Rand, AirnPt,

ExData;
FROM Global IMPORT ShipAccuracy;
FROM Spotter IMPORT SpotterObj;
FROM StdScrn IMPORT Screen, Lines;
FROM UtilMod IMPORT ClockTimeSecs, ClockRealSecs, Delay;

OBJECT PointSpotObj;

ASK METHOD GetPointTgt (IN mapfamily :STRING);

VAR
strml : StreamObj;

i : INTEGER;

tgtlist : STRING;

BEGIN
tgtlist := mapfamily + 1".ptgt';

NEW (strrnl);
ASK strml TO Open (tgtlist, Input);
ASK strml TO Readlnt(nuntgts);
NEW(tgtl,l..numtgts);

FOR i := 1 TO numtgts
NEW(tgtl [i]);
ASK strml TO ReadString(tgtl[il.tgtID);
ASK strml TO ReadReal(tgtl[iJ.x);
ASK strml TO ReadReal(tgtl~i).y);
ASK strml TO ReadReal(tgtl[i).lat);
ASK strml TO ReadReal(tgtl[i).lon);
ASK strml TO ReadString(tgtlti].type);
ASK strml TO ReadString(tgtl~il.protection);
ASK strml TO ReadString(tgtl[i).quantity);

END FOR;

ASK strml TO Close;

119



DISPOSE(strnl);

END METHOD;

ASK METHOD Prosecute(IN salvos INTEGER; IN mapfamily STRING);

VAR

duxn2 CHAR;

Spotter SpotterObj;

roundsfired,
tgt,
FFEf lag INTEGER;

tempR,
LR, AD REAL;

BEGIN
NEW(PSpotter);

ASK PSpotter TO Greeting;
ASK PSpotter TO GetPointTgt (mapfamily);
tgt :=ASK Rand Uniformlnt(l,nuntgts);
ASK PSpotter TO GetAirnPt;

OUTPUT("1FIRE MISSION TARGET NUMBER "1, tgtl[tgtJ.tgtID, OVER");
Screen (8) ;
INPUT(dun2);
ASK ExData TO WriteReal(ClockRealSecs, 8, 4);
ASK ExData TO WriteLn;

Lines (2);
Screen (3);
OUTPUT("-FIRE MISSION TARGET NUMBER ", tgtl[tgt].tgtID, "OUT");

INPUT(dun2);
ASK ExData TO WriteReal(ClockRealSecs, 8, 4);
ASK ExData TO WriteLn;

Lines (2);
Screen(6);
OUTPUT(11FROM TARGET NUMBER ",tgtl [tgt] .tgtID);
OUTPUT("'DIRECTION ". AirnPt.bearing, "MAGNETIC");
OUTPUT (AimPt.rangedir," ",AimPt.range," "1,AixnPt.elevdir," "

AimPt.elev) ;
OUTPUT (tgtl [tgt) .type);
OUTPUT(salvos," SALVOS IN EFFECT SHORE ADJUST OVER");
Screen (8)
INPUT(dun2);
ASK ExData TO WriteReal(ClockRealSecs, 8, 4);
ASK ExData TO WriteLn;

Lines (2);
Screen (3);
OUTPUT("FROM TARGET NUMBER ",tgtl~tgtJ .tgtlD);
OUTPUT("'DIRECTION ", AirnPt.bearing, " MAGNETIC");

120



OUTPUT(AirnPt.rangedir," ",AimPt.range," ",AixnPt.elevdir," "

AimPt .elev);
OUTPUT (tgtl Etgt) .type);
OUTPUT(salvos," SALVOS IN EFFECT SHORE ADJUST OUT");
INPUT (dum2) ;
ASK ExData TO WriteReal(ClockRealSecs, 8, 4);
ASK ExData TO WriteLn;

Lines (2);
Screen (3);
OUTPUT("IGUN TARGET LINE ___DEGREES MAGNETIC");
OUTPUT("READY ___(TIME OF FLIGHT IN SECONDS)");
OUTPUT ("OVER");
INPUT(dumr2);
ASK ExData TO WriteReal(ClockRealSecs, 8, 4);
ASK ExData TO WriteLn;

Lines (2);
Screen(6);
OUTPUT("IGUN TARGET LINE ___DEGREES MAGNETIC");
OUTPUT("IREADY ___(TIME OF FLIGHT IN SECONDS)");
OUTPUT ("BREAK , FIRE , OVER");
Screen (8);
INPUT(duxn2);
ASK ExData TO WriteReal(ClockRealSecs, 8, 4);
ASK ExData TO WriteLn;
Lines (2);

Screen(3);
OUTPUT("FIRE ,OUT");

INPUT (dum2) ;
ASK ExData TO WriteReal(ClockRealSecs, 8, 4);
ASK ExData TO WriteLn;

FFEflag := 0;
roundsfired 0;

WHILE (roundsfired < salvos) AND (FFEflag = 0)

Screen (3);
OUTPUT ("SHOT"1);
INPUT (durn2);
ASK ExData TO WriteReal(ClockRealSecs, 8, 4);
ASK ExData TO WriteLn;
Delay (2);

Screen (3);
IF (roundsfired + 1) = salvos

OUTPUT("SPLASH ,ROUNDS COMPLETE , OVER");

ELSE
OUTPUT("ISPLASH ,OUT");

END IF;
INPUT (dun2);
ASK ExData TO WriteReal(ClockRealSecs, 8, 4);

121



ASK Exflata TO WriteLn;

IF (roundsfired + 1) < salvos

Screen(6);
LR :- ASK Rand TO Normal(0.0,ShipAccuracy.deflection);
IF LR < 0.0

OUTPUT("1LEFT 11, ABS(TRUNC(LR)));
ELSE

OUTPUT("RIGHT "1, ABS(TRUNC(LR)));
END IF;

trnpR :=FLOAT(AimPt.range);
AD :=ASK Rand TO Norxnal(tempR, ShipAccuracy.range);
IF AD < 0.0

OUTPUT("'DROP "1, ABS(TRUTNC(AD)));
ELSE

OUTPUT(-ADD "1, ABS(TRUNC(AD)));
END IF;

OUTPUT ("OUT");
Screen (8)
INPUT(dun2);
ASK ExData TO WriteReal(ClockRealSecs, 8, 4);
ASK ExData TO WriteLn;
Lines (2);

Screen (3);
IF LR < 0.0

OUTPUT("LEFT ", ABS(TRUNC(LR)));
ELSE

OUTPUT ("RIGHT "1, ABS (TRUNC (LR)));
END IF;

IF AD < 0.0
OUTPUT("DROP "1, ABS(TRUNC(AD)));

ELSE
OUTPUT("IADD ", ABS(TRUNC(AD)));

END IF;
OUTPUT("OUT");
INPUT (dum2) ;
ASK ExData TO WriteReal(ClockRealSecs, 8, 4);
ASK ExData TO WriteLn;

END IF;

roundsfired :=roundsfired + 1;

END WHILE;

Screen(6);
OUTPUT("ROUNDS COMPLETE ,END OF MISSION-);
OUTPUT("1TARGET NUMBER ",tgtl(tgt).tgtlD, 11DESTROYED ,OVER");

Screen (8);
INPUT (dum2);
ASK ExData TO WriteReal(ClockRealSecs, 8, 4);

122



ASK ExData TO WriteLn;

Screeri(3);
OUTPUT("ROUNDS COMPLETE ,END OF MISSION-);
OUTPUT("TARGET NUMBER ",tgtl[tgtJ.tgtID, 11DESTROYED ,OUT");

INPUT(dun2);
ASK ExData TO WriteReal(ClockRealSecs, 8, 4);
ASK ExData TO WriteLn;

END METHOD;

END OBJECT;

END MODULE.

123



DEFINITION MODULE ShipData;

( - --------------------------------------------------------------------

MODULE NAME: ShipData
AUTHOR: LT. WARREN A. MAZANEC
DATE WRITTEN: 12/7/91
LAST MODIFIED: 2/14/92

DESCRIPTION:

This is the definition module that controls editing the data file
containing pertinent ship's data.

-------------------------------------------------------------------

PROCEDURE VerifyShip;
PROCEDURE ChangeShip;
PROCEDURE ChangeAccel;
PROCEDURE ChangeDecel;
PROCEDURE ChangeTRate;
PROCEDURE ShipHardCopy;

END MODULE.

124



IMPLEMENTATION MODULE ShipData;

MODULE NAME: ShipData

AUTHOR: LT. WARREN A. MAZANEC

DATE WRITTEN: 12/7/91

LAST MODIFIED: 2/14/92

DESCRIPTION:

This is the module that controls editing the data file containing

pertinent ship's data.

FROM CRTMod IMPORT ClearScreen;

FROM StdScrn IMPORT Screen, Lines;

FROM Global IMPORT ShipFile,CSbeach,CSship,ShipAccuracy,SpotterBias;
FROM Global IMPORT THead, TRudder, TSpeed;
FROM IOMod IMPORT StreamObj, FileUseType(Output);

FROM UtilMod IMPORT DateTime;

VAR

dummy : CHAR;

{ *************** ***** ********* ***** ******* ********************* I

PROCEDURE VerifyShip;

CONST

format = " *** *** ** *** ** *** ** ***.**".
format2 - " ** ** ** *** **""

tt = "TO";

VAR
rdum -EAL;

i,j,k :.GER;

head ARRAY INTEGER OF STRING;

BEGIN

Lines (3);
OUTPUT("The following is current ships data,");

OUTPUT("Please hit -zeturn> when ready to continue");
Lines (2);
OUTPUT("SHIP: USS ", ShipFile.name," ",ShipFile.desig, "

ShipFile.hullno);

OUTPUT("CO: ", ShipFile.COrank," ", ShipFile.COname);

OUTPUT("XO: ", ShipFile.XOrank, . , ShipFile.XOname);

OUTPUT("Ship's GFCS: ", ShipFile.GFCS, " mod ",ShipFile.model);

OUTPUT(" ");

125



OUTPUT("Spotter's Call Sign: ",CSbeach);
OUTPUT("Ship's Call Sign: ",CSship);
OUTPUT(" ");
OUTPUT("Gun Battery Accuracy, (error is standard deviation):
OUTPUT (" range: ",ShipAccuracy.range);
OUTPUT (" deflection: ",ShipAccuracy.deflection);
INPUT (dummy);
Lines (3);

OUTPUT(" Acceleration Data");
OUTPUT("Time in Seconds it takes To Increase Speed From the");
OUTPUT(" Low End To the High End of the Speed Range");
Lines (1);
OUTPUT(" KNOTS SECONDS");
FOR i := 1 TO 6
PRINT(i*5-5,tt,i*5,ShipFile.accel[i]) WITH format2;

END FOR;
Lines (1);
Screen(5);
INPUT (dummy);

OUTPUT(" Deceleration Data");
OUTPUT("Time in Seconds it takes To Decrease Speed From the");
OUTPUT(" High End To the Low End of the Speed Range");
Lines (1);
OUTPUT(" KNOTS SECONDS");
FOR i := 6 DOWNTO 1
PRINT(i*5,tt,i*5-5,ShipFile.decel[i]) WITH format2;

END FOR;
Lines (1);
Screen(5);
INPUT (dummy);

NEW(head, 1..4);
head~l] := " 0-15";
head[2] : "15-30";

head[3] := "30-45";
head[4] : "45-60";

OUTPUT(" Turn Rate Data");
OUTPUT("Time in Seconds it takes to turn in Relative Degrees,");
OUTPUT(" At a given Speed and Rudder Angle");
Lines (2);

FOR i :- 1 TO 3
OUTPUT(" TABLE FOR SPEED ",TSpeed[i],"Knots");
OUTPUT;
OUTPUT(" Amount Of Turn In Relative Degrees");
OUTPUT("Rudder Angle ",head[l)," ",head[2],"

head[3]," ",head[4]);

FOR j := 1 TO 3
PRINT(TRudder[j],ShipFile.turnrate(i] j] [1],
ShipFile.turnrate(i][j] [2), ShipFile.turnrate[i][j] (3],
ShipFile.turnrate[i] [j] (4]) WITH format;

END FOR;

126



Screen (5);
INPUT(dummy);
Lines (2);

END FOR;

OUTPUT("Would You Like A Hard Copy of This Data Made? < Y/N
INPUT (dummy) ;
IF (dummy - 'y') OR (dummy = 'Y')
Lines (2);
OUTPUT("It will take a moment .......
ShipHa rdCopy;

END IF;

END PROCEDURE;

{ ****************************************************************** }

PROCEDURE ChangeShip;

CONST
format = " *** * ** * ** * ** **";
format2 = " * ** ** ** ***
tt = "TO";

VAR
rdum : REAL;

UpdateFile,
option : INTEGER;

flag,
again,
more CHAR;

ShipDataFile : StreamObj;

dummy CHAR;

entry,
i,j,k INTEGER;

head ARRAY INTEGER OF STRING;

BEGIN

more := 'y';
UpdateFile := 0;

WHILE (more = "y") OR (more = "Y")

more := In';

VerifyShip;
OUTPUT(" ");
OUTPUT("Please Input the number of the option you wish to alter:");

127



OUTPUT(" 1. Ship ");

OUTPUT(" 2. CO ");
OUTPUT(" 3. XO ");
OUTPUT(" 4. Gun Fire Control System ");

OUTPUT(" 5. Call Signs ");
OUTPUT(" 6. Gun Battery Accuracy ");

OUTPUT(" 7. Acceleration Data");
OUTPUT(" 8. Deceleration Data");
OUTPUT(" 9. Turning Rate Data");
OUTPUT("10. Do Not Wish To Alter Any Data ");

INPUT (option);

flag := In';

CASE option
WHEN 1:

OUTPUT(" ");
OUTPUT("Answer either <Y> folowed by <return>");

OUTPUT(" or <return> for NO Change Desired");
OUTPUT(" to select an entry for change");
OUTPUT(" .);

OUTPUT(" );

OUTPUT ("Ship's Name: USS ",ShipFile.name," ?");
INPUT (flag);

IF (flag = "Y") OR (flag = "y")

OUTPUT("Ship's Name ?");
INPUT (ShipFile.name);

flag := In';

UpdateFile := 1;
END IF;

OUTPUT(" ");
OUTPUT("Ship's Designater: ",ShipFile.desig," ?");

INPUT (flag);
IF (flag = "Y") OR (flag = "y")

OUTPUT ("Ship's Designator ?");
INPUT (ShipFile .desig);
flag := 'n';

UpdateFile := 1;
END IF;

OUTPUT(" ");
OUTPUT("Ship's Hull Number: ",ShipFile.hullno," ?");
INPUT (flag);
IF (flag = "Y") OR (flag = y")

OUTPUT ("Ship's Hull Number ?");
INPUT (ShipFile.hullno);
flag := In';
UpdateFile := 1;

END IF;

WHEN 2:

OUTPUT(" ");
OUTPUT("Answer either <Y> folowed by <return>");
OUTPUT(" or <return> for NO Change Desired");
OUTPUT(" to select an entry for change");
OUTPUT(" .);

128



OUTPUT(" ");
OUTPUT("CO's Rank: ",ShipFile.COrank," ?");
INPUT (flag) ;
IF (flag - "Y") OR (flag VV ""

OUTPUT("CO's Rank ?");
INPUT (ShipFile.COrank);
flag := I'

UpdateFile := 1;
END IF;
OUTPUT("")
OUTPUT("CO's Name: ",ShipFile.COname," 2)
INPUT (f lag) ;
IF (flag = "Y") OR (flag y Ty")

OUTPUT("CO's Name ?");
INPUT (ShipFile .COname);
flag := In';
UpdateFile := 1;

END IF;

WHEN 3:
OUTPUT("")
OUTPUT ("Answer eit-her <Y> folowed by <return>");
OUTPUT(" or <return> for NO Change Desired");
OUTPUT("- to select an entry for change");
OUTPUT("")

OUTPUT("")
OUTPUT("XO's Rank: ",ShipFile.XOrank," 2");
INPUT (flag);
IF (flag = "1Y") OR (flag = "y")

OUTPUT("XO's Rank ?");
INPUT (ShipFile .XOrank);
flag := I'

UpdateFile := 1;
END IF;
OUTPUT("')
OUTPUT("XO's Name: "',ShipFile-.Y---
INPUT (flag);
IF (flag = "Y") OR (flag =y~

OUTPUT("XO's Name ?");
INPUT (ShipFile .XOname);
flag :=I'
UpdateFile := 1;

END IF;

WHEN 4:
OUTPUT("")
OUTPUT("Answer either <Y> folowed by <return>");
OUTPUT(" or <return> for NO Change Desired");
OUTPUT(- to select an entry for change");
OUTPUT("")

OUTPUT("')
OUTPUT("Ship's GFCS: ",ShipFile.GFCS," 2)
INPUT (flag);

129



IF (flag = "Y") OR (flag = ""

OUTPUT("Ship's GFCS ?");
INPUT (ShipFile.GFCS);
flag := I'

UpdateFile :=1;
END IF;
OUTPUT(M )

OUTPUT("Ship's GFCS mod: ",ShipFile.model," ?");
INPUT (f lag) ;
IF (flag = "Y") OR (flag = ""

OUTPUT("Ship's GFCS mod ?");
INPUT(ShipFile.model);
flag :=I'
UpdateFile := 1;

END IF;

WHEN 5:
OUTPUT(M )

OUTPUT("Answer either <Y> folowed by <return>");
OUTPUT(" or <return> for NO Change Desired");
OUTPUT('' to select an entry for change");
OUTPUT(M )

OUTPUT(M )

OUTPUT('Spotter's Call Sign: ",CSbeach," ?");
INPUT (flag);
IF (flag = "Y") OR (flag = "y")

OUTPUT("Spotterls Call Sign ?)
INPUT (CSbeach);
flag := In';

UpdateFile := 1;
END IF;
OUTPUT(M )

OUTPUT("Ship's Call Sign: ",CSship," ?");
INPUT (f lag);
IF (flag = "Y") OR (flag = ""

OUTPUT("Ship's Call Sign ?)
INPUT (CSship);
flag := In';
UpdateFile := 1;

END IF;

WHEN 6:
OUTPUT(M )

OUTPUT("Aiswer either <Y> folowed by <return>");
OUTPUT(" or <return> for NO Change Desired");
OUTPUT('' to select an entry for change");
OUTPUT(M )

OUTPUT(M )

OUTPUT("Gun Battery Accuracy, (error is standard
deviation) ");

OUTPUT("Range: ",ShipAccuracy.range," ?)

INPUT(flag);
IF (flag = "Y") OR (flag = "y")

OUTPUT("Gun Battery Accuracy Range ?)

130



INPUT (ShipAccuracy. range);
flag:=I'
UpdateFile := 1;

END IF;
OUTPUT(" )

OUTPUT("Deflection: "1,ShipAccuracy.deflection," 7)
INPUT (flag) ;
IF (flag = "Y") OR (flag = 1

OUTPUT("'Gun Battery Accuracy Deflection 7)
INPUT (ShipAccuracy.deflection);
flag:=I'
UpdateFile :=1;

END IF;

WHEN 7:
ChangeAccel;
UpdateFile :=1;

WHEN 8:
ChangeDecel;
UpdateFile := 1;

WHEN 9:
ChangeTRate;
UpdateFile :=1;

OTHERWI SE

END CASE;

OUTPUT('Change Any Other Ship's Data ?,INPUT < YIN > <return>");

INPUT (more);

END WHILE;

IF UpdateFile = 1
NEW(ShipDataFile);
ASK ShipDataFile TO Open ("Ship~data",Output);
ASK ShipDataFile TO WriteString(ShipFile.name);
ASK ShipDataFile TO WriteLn;
ASK ShipDataFile TO WriteString(ShipFile.desig);
ASK ShipDataFile TO WriteLn;
ASK ShipDataFile TO WriteString(ShipFile.hullno);
ASK ShipDataFile TO WriteLn;
ASK ShipDataFile TO WriteString(ShipFile.Coname);
ASK ShipDataFile TO WriteLn;
ASK ShipDataFile TO WriteString(ShipFile.Corank);
ASK ShipDataFile TO WriteLn;
ASK ShipDataFile TO WriteString(ShipFile.Xoname);
ASK ShipDataFile TO WriteLn;
ASK ShipDataFile TO WriteString (ShipFile .Xorank);
ASK ShipDataFile TO WriteLn;
ASK ShipDataFile TO WriteString(ShipFile.GFCS);
ASK ShipDataFile TO WriteLn;
ASK ShipDataFile TO Writelnt(ShipFile.model, 4);
ASK ShipDataFile TO WriteLn;

131



ASK ShipDataFile TO WriteString(CSbeach);
ASK ShipDataFile TO WriteLn;
ASK ShipDataFile TO WriteString(CSship);
ASK ShipDataFile TO WriteLn;
ASK ShipDataFile TO WriteReal(ShipAccuracy.range, 8, 4);
ASK ShipDataFile TO 1WriteLn;
ASK ShipDataFile TO WriteReal(ShipAccuracy.deflection, 8, 4);
ASK ShipDataFile TO WriteLn;
ASK ShipDataFile TO WriteReal(SpotterBias.range, 8, 4);
ASK ShipDataFile TO WriteLn;
ASK ShipDataFile TO WriteReal(SpotterBias.deflection, 8, 4);
ASK ShipDataFile TO WriteLn;
FOR i 1= TO 6

ASK ShipDataFile TO WriteReal(ShipFile.accel~il, 8, 4);
ASK ShipDataFile TO WriteLn;

END FOR;

FOR i :=1 TO 6
ASK ShipDataFile TO WriteReal(ShipFile.decel[iI, 8, 4);
ASK ShipDataFile TO WriteLn;

END FOR;

FOR i :=1 TO 3 {speeds of 5, 15, 25
FOR j:= 1 TO 3 {rudder angles of 5, 15,25)

FOR k:= 1 TO 4 {heading change 0-15, 15-30,
30-45, 45-601

ASK ShipDataFile TO
WriteReal (ShipFile.turnrate~iJ (j) fk], 8, 4);

ASK ShipDataFile TO WriteLn;
END FOR;

END FOR;
END FOR;
ASK ShipDataFile TO Close;
DISPOSE(ShipDataFile);

END IF;

OUTPUT("A Hard Copy of This Data Is Being Made ;

OUTPUT("It will take a moment .......
ShipHardCopy;

END PROCEDURE;

PROCEDURE ChangeAccel;

CONST
format2 = * * ** *

tt = "TO";

VAR
again CHAR;

dummy CHAR;

132



entry,
i,j,k INTEGER;

BEGIN
again := 'y';
WHILE (again = "y") OR (again = "Y")
OUTPUT(" Acceleration Data");
OUTPUT("Time in Seconds it takes To Increase Speed From the");
OUTPUT(" Low End To the High End of the Speed Range");
Lines (1);
OUTPUT( "ENTRY KNOTS SECONDS");
FOR i := 1 TO 6

PRINT(i,i*5-5,tt,i*5,ShipFile.accel[i]) WITH format2;
END FOR;

Lines (1);
OUTPUT("Input the number corresponding to the entry you wish to
change");
INPUT (i);
WHILE (i < 1) OR (i > 6)

OUTPUT("Input is out of bounds, must be between 1 and 6,
TRY AGAIN");
OUTPUT("Input ENTRY");
INPUT(i);

END WHILE;

Lines (1);
OUTPUT("ENTRY KNOTS SECONDS");
PRINT(i,i*5-5,tt,i*5,ShipFile.acceli]) WITH format2;
OUTPUT("Enter New Time in Seconds");
INPUT(ShipFile.accel [i]);
Lines (2);

OUTPUT(" Acceleration Data");
OUTPUT("Time in Seconds it takes To Increase Speed From the");
OUTPUT(" Low End To the High End of the Speed Range");
Lines ();
OUTPUT( "ENTRY KNOTS SECONDS");
FOR i := 1 TO 6

PRINT(i,i*5-5,tt,i*5,ShipFile.accel[i]) WITH format2;
END FOR;
Lines (2);
OUTPUT("Change more Acceleration Data? < Y/N >");
INPUT (again);

END WHILE;

END PROCEDURE;

PROCEDURE ChangeDecel;

CONST
format2 - " * ** ** ** *** *
tt = "TO";

133



VAR
again CHAR;

dummy CHAR;

entry,
i, j,k INTEGER;

BEGIN
again := 'y';
WHILE (again = "y") OR (again = "Y")

OUTPUT(" Deceleration Data");
OUTPUT("Time in Seconds it takes To Decrease Speed From the");
OUTPUT(" High End To the Low End of the Speed Range");
Lines (1);
OUTPUT("ENTRY KNOTS SECONDS");
FOR i := 1 TO 6

PRINT(i,i*5,tt,i*5-5,ShipFile.decel[i]) WITH format2;
END FOR;

Lines (1);
OUTPUT("Input the number corresponding to the entry you wish to
change");
INPUT(i);
WHILE (i < 1) OR (i > 6)

OUTPUT("Input is out of bounds, must be between 1 and 6,
TRY AGAIN");
OUTPUT ("Input ENTRY");
INPUT (i);

END WHILE;

Lines (1);
OUTPUT("ENTRY KNOTS SECONDS");
PRINT(i,i*5,tt,i*5-5,ShipFile.decel[i]) WITH format2;
OUTPUT( "Enter New Time in Seconds");
INPUT (ShipFile.decel ti);
Lines (2);

OUTPUT(" Deceleration Data");
OUTPUT("Time in Seconds it takes To Decrease Speed From the");
OUTPUT(" High End To the Low End of the Speed Range");
Lines (1);
OUTPUT ("ENTRY KNOTS SECONDS");
FOR i := 1 TO 6

PRINT(i,i*5,tt,i*5-5,ShipFile.decel(i]) WITH format2;
END FOR;
Lines (2);
OUTPUT("Change more Deceleration Data? < Y/N >");
INPUT (again);

END WHILE;

END PROCEDURE;

{ ****************************************************************** 

134



PROCEDURE ChangeTRate;

CONST
format = " * *** *** ** ***.** *** **

VAR
again CHAR;

entry,
i,j,k INTEGER;

head ARRAY INTEGER OF STRING;

BEGIN
NEW(head, l..4);
head(l] " 0-15";

head[2] "15-30";
head[3] "30-45";
head[4] "45-60";

again := 'y';
WHILE (again = "y") OR (again = "Y")

OUTPUT(" Select The Speed You Wish To Edit");
OUTPUT("For Rudder Angle and Heading Change Combinations");
OUTPUT;
OUTPUT(" 1. 5 KNOTS");
OUTPUT(" 2. 15 KNOTS");
OUTPUT(" 3. 25 KNOTS");
OUTPUT;
OUTPUT("Input The Number Corresponding To The Correct Speed");
INPUT(i);

WHILE (i<l) OR (i>3)
OUTPUT("The entry was not 1,2, or 3 ; TRY AGAIN");
OUTPUT;
OUTPUT(" 1. 5 KNOTS");
OUTPUT(" 2. 15 KNOTS");
OUTPUT(" 3. 25 KNOTS");
OUTPUT;
OUTPUT("Input The Number Corresponding To The Correct Speed");
INPUT (i);

END WHILE;

OUTPUT(" Turn Rate Data");
OUTPUT(" Time in Seconds it takes to turn in Relative
Degrees,");
OUTPUT(" At a given Speed and Rudder Angle");
Lines (2);

OUTPUT(" TABLE FOR SPEED ",TSpeed[il,"Knots");
OUTPUT;

135



OUTPUT(" Amount Of Turn In Relative Degrees");
OUTPUT("ENTRY Rudder Angle ",head(1)," ",head[2],

",head[3]," ",head[4));

FOR j :- 1 TO 3
PRINT(j,TRudder~j),ShipFile.turnrate~i) [j] [1),
ShipFile.turnrate~i] i] [2), ShipFile.turnrate[i]jI) [3],
ShipFile.turnrate[i) [j)[4)) WITH format;

END FOR;

Lines (1)
OUTPUT("Input the number corresponding to the entry you wish
to change");
INPUT(j);
WHILE (j < 1) OR (j > 3)

OUTPUT("The entry was not 1,2, or 3 ; TRY AGAIN");
OUTPUT("Input ENTRY");
INPUT Ci);

END WHILE;

OUTPUT("IENTRY Rudder Angle ",head[l],," ",head[2),
11 ",head[3]," ",head[4));

PRINT(j,TRudder[j],ShipFile.turnrate[i) [jJ [1),
ShipFile.turnrate[i) [j) [2), ShipFile.turnrateti3[j)[3),
ShipFile.turnrate[i) [j] (4]) WITH format;
Lines (2);
FOR k := 1 TO 4

OUTPUT("Input the new time in Seconds for ",head[k),
"using ",TRudder[j)," Degrees of Rudder");

INPUT(ShipFile.turnrate~i) [j)[k));
END FOR;
Lines (2);
OUTPUT("ENTRY Rudder Angle ",head[l)," ",head[2),

11 ",head[3b"1 ",head[4]);
PRINT(j,TRudder[j],ShipFile.turnrate[i)[jfll),
ShipFile.turnrate[i] [j) [2], ShipFile.turnrate~i] i] [3),
ShipFile.turnrate~i)[j) [4)) WITH format;

Lines (2);
OUTPUT("Change more Deceleration Data? < Y/N >n);
INPUT (again);

END WHILE;

END PROCEDURE;

PROCEDURE ShipHardCopy;

CONST
format =" ***** ***

format2 ="* **

tt = "TO";

VAR
rdum. REAL;

136



i,j,k : INTEGER;

head : ARRAY INTEGER OF STRING;

str : STRING;

copy StreamObj;

BEGIN
NEW(copy);
ASK copy TO Open("ShipData.prt",Output);

ASK copy TO WriteString("The following is current ships data as
of:");
ASK copy TO WriteLn;
DateTime (str);
ASK copy TO WriteString(str);
ASK copy TO WriteLn;
ASK copy TO WriteLn;
ASK copy TO WriteLn;
ASK copy TO WriteString("SHIP: USS ");
ASK copy TO WriteString(ShipFile.name);
ASK copy TO WriteString(" ");
ASK copy TO WriteString(ShipFile.desig);
ASK copy TO WriteString(" ");
ASK copy TO WriteString(ShipFile.hullno);
ASK copy TO WriteLn;
ASK copy TO WriteString("CO:
ASK copy TO WriteString(ShipFile.COrank);
ASK copy TO WriteString(" ");
ASK copy TO WriteString(ShipFile.COname);
ASK copy TO WriteLn;
ASK copy TO WriteString("XO:
ASK copy TO WriteString(ShipFile.XOrank);
ASK copy TO WriteString(" ");
ASK copy TO WriteString(ShipFile.XOname);
ASK copy TO WriteLn;
ASK copy TO WriteString("Ship's GFCS: ");
ASK copy TO WriteString(Ship; .GECS);
ASK copy TO WriteString(" mc
ASK copy TO Writelnt(ShipFile.mxti,3);
ASK copy TO WriteLn;

ASK copy TO WriteLn;
ASK copy TO WriteString("Spotter's Call Sign:
ASK copy TO WriteString(CSbeach);
ASK copy TO WriteLn;
ASK copy TO WriteString("Ship's Call Sign: ");

ASK copy TO WriteString(CSship);
ASK copy TO WriteLn;
ASK copy TO WriteLn;
ASK copy TO WriteString("Gun Battery Accuracy, (error is standard
deviation): ");

ASK copy TO WriteLn;

137



ASK copy TO WriteS ng(" range:
ASK copy TO WriteRed .(ShipAccuracy.range, 6,2);
ASK copy TO WriteLn;
ASK copy TO WriteString(" deflection: ");
ASK copy TO WriteReal(ShipAccuracy.deflection, 6,2);
ASK copy TO WriteLn;
ASK copy TO WriteLn;
ASK copy TO WriteLn;
ASK copy TO WriteLn;

ASK copy TO WriteString(" Acceleration Data");
ASK copy TO WriteLn;
ASK copy TO WriteString("Time in Seconds it takes To Increase
Speed From the");
ASK copy TO WriteLn;
ASK copy TO WriteString(" Low End To the High End of the
Speed Range");
ASK copy TO WriteLn;
ASK copy TO WriteLn;
ASK copy TO WriteString(" KNOTS SECONDS");
ASK copy TO WriteLn;
FOR i : 1 TO 6
str := SPPINT(i*5-5,tt,i*5,ShipFile.accel(i]) WITH format2;
ASK copy TO WriteString(str);
ASK copy TO WriteLn;

END FOR;
ASK copy TO WriteLn;
ASK copy TO WriteLn;

ASK copy TO WriteString(" Deceleration Data");
ASK copy TO WriteLn;
ASK copy TO WriteString("Time in Seconds it takes To Decrease
Speed From the");
ASK copy TO WriteLn;
ASK copy TO WriteString(" High End To the Low End of the
Speed Range");
ASK copy TO WriteLn;
ASK copy TO WriteLn;
ASK copy TO WriteString(" KNOTS SECONDS");
ASK copy TO WriteLn;
FOR i := 6 DOWNTO 1
str : SPRINT(i*5,tt,i*5-5,ShipFile.decel[i)) WITH format2;
ASK copy TO WriteString(str);
ASK copy TO WriteLn;

END FOR;
ASK copy TO WriteLn;
ASK copy TO WriteLn;
ASK copy TO WriteLn;

NEW(head, l..4);
head[l] :- " 0-15";
head[2) :- "15-30";
head[3] :- "30-45";
head[4] : "45-60";

ASK copy TO WriteString(" Turn Rate Data");

138



ASK copy TO WriteLn;
ASK copy TO WriteString(" Time in Seconds it takes to turn in
Relative Degrees,");
ASK copy TO WriteLn;
ASK copy TO WriteString(" At a given Speed and Rudder
Angle");
ASK copy TO WriteLn;
ASK copy TO WriteLn;
ASK copy TO WriteLn;

FOR i :- 1 TO 3
ASK copy TO WriteString(" TABLE FOR SPEED ");
ASK copy TO WriteInt(TSpeed[i],2);
ASK copy TO WriteString(" Knots");
ASK copy TO WriteLn;
ASK copy TO WriteLn;
ASK copy TO WriteString(" Amount Of Turn In
Relative Degrees");
ASK copy TO WriteLn;
ASK copy TO WriteString("Rudder Angle ");
ASK copy TO WriteString(head[l]);
ASK copy TO WriteString("
ASK copy TO WriteString(head[2));
ASK copy TO WriteString("
ASK copy TO WriteString(head[3]);
ASK copy TO WriteString(" .);
ASK copy TO WriteString(head[4]);
ASK copy TO WriteLn;

FOR j := 1 TO 3
str := SPRINT(TRudder[j], ShipFile.turnrate[i) [j) [],
ShipFile.turnrate[i](j] [2), ShipFile.turnrate[i](j] [3],
ShipFile.turnrate[i] [j] (4]) WITH format;
ASK copy TO WriteString(str);
ASK copy TO WriteLn;

END FOR;
ASK copy TO WriteLn;
ASK copy TO WriteLn;

END FOR;

ASK copy TO Close;
DISPOSE(copy);
Lines(2);
OUTPUT("A hard copy of the Ship's Data File Has Been Saved ");
OUTPUT("A File Named ShipData.prt");
Lines(2);

END PROCEDURE;

END MODULE.

139



DEFINITION MODULE Spotter;

MODULE NAME: Spotter
AUTHOR: LT. WARREN A. MAZANEC
DATE WRITTEN: 11/27/91
LAST MODIFIED: 12/2/91

DESCRIPTION:

This is the definition module that controls spotting targets with
methods common to all types of spotting.

TYPE
SpotterObj = OBJECT
ASK METHOD Greeting;
ASK METHOD GetAimPt;

ASK METHOD SelectTarget(IN Aim:STRING; OUT Target:TargetType);
ASK METHOD ConvertXYtoMILS(IN Xcoord,Ycoord : REAL; OUT Xmil,
Ymil : REAL);
ASK METHOD ConvertXYtoRangeBearing(IN Xcoord,Ycoord : REAL;
OUT Range, Bearing : REAL);
ASK METHOD ConvertMILStoXY(IN Xmil, Ymil : REAL;
OUT Xcoord,Ycoord : REAL);
ASK METHOD ConvertRangeBearingtoXY(IN Range, Bearing REAL;
OUT Xcoord,Ycoord : REAL);

END OBJECT;

END MODULE.

140



IMPLEMENTATION MODULE Spotter;

MODULE NAME: Spotter
AUTHOR: LT. WARREN A. MAZANEC
DATE WRITTEN: 11/27/91
LAST MODIFIED: 12/2/91

DESCRIPTION:

This is the module that controls spotting targets with methods common to
all types of spotting.

FROM Global IMPORT ShipFile,CSbeach,CSship, AimPt, Rand;
FROM StdScrn IMPORT Screen, Lines;
FROM Debug IMPORT TraceStream;
FROM IOMod IMPORT FileUseType(Output);
FROM Global IMPORT AimType, ExData;
FROM MathMod IMPORT SQRTACOS,ASIN;
FROM UtilMod IMPORT ClockTimeSecs, ClockRealSecs, Delay;

OBJECT SpotterObj;

ASK METHOD Greeting;

VAR
duml : CHAR;

BEGIN

OUTPUT("This is an NGFS Excercise for the USS",ShipFile.name);
OUTPUT(. ");
Screen (4);
INPUT(dural);
OUTPUT (" );

OUTPUT( .);

Screen (3);
OUTPUT(CSbeach," THIS IS ", CSship);
OUTPUT("ON STATION AND READY FOR CALL FOR FIRE OVER");
INPUT(dural);
ASK ExData TO WriteReal(ClockRealSecs, 8, 4);
ASK ExData TO WriteLn;
OUTPUT(" ");
OUTPUT(" ");
OUTPUT( .);

Screen(6);
OUTPUT(CSship," THIS IS ",CSbeach);

END METHOD;

ASK METHOD GetAimPt;

141



VAR

a, ( temp X value
b, ( temp Y value

c REAL; hypotenuse

BEGIN

NEW(AirnPt);

a ASK Rand UniformReal(-500.O, 500.0);
b ASK Rand UnifornReal(-500.0, 500.0);
c SORT (a*a + b*b) ;

AimPt.range :=ROUND(c);
AirPt.rangedir :="ADD";

AimPt.elev :=ASK Rand TO UniformIlnt(-50,1500);

IF AirnPt.elev < 0
AimPt.elevdir "DOWN";

ELSE
AimPt.elevdir "UP";

END IF;

AimPt.Xcoord a;
AimPt.Ycoord b;

IF b >= 0.0
IF a >= 0.0

AimPt.bearing ROtJND(ACOS(a/c));
ELSE

AintPt.bearing 180 - ROUND(ASIN(b/c));
END IF;

ELSE
IF a < 0.0

a :=ABS(a);
AimPt.bearing 180 + ROUND(ACOS(alc));

ELSE
AirnPt.bearing 360 - ROUND(ACOS(alc));

END IF;
END IF;

IF AirnPt.bearing = 360
AirnPt.bearing :=0;

END IF;

END METHOD;

END OBJECT;

END MODULE.

142



DEFINITION MODULE StdScrn;

MODULE NAME: StdScrn
AUTHOR: LT. WARREN A. MAZANEC
DATE WRITTEN: 11/27/91
LAST MODIFIED: 1/22/92

DESCRIPTION:

This is the definition module that controls outputting standard
screen messages. This will reduce the number of OUTPUT statements
found in the dialog sections of the scenarios.

PROCEDURE Screen(IN Phrase : INTEGER);
PROCEDURE Lines(IN numlines : INTEGER);
PROCEDURE Reminder(IN system : INTEGER);

END MODULE.

143



IMPLEMENTATION MODULE StdScrn;

MODULE NAME: StdScrn
AUTHOR: LT. WARREN A. MAZANEC
DATE WRITTEN: 11/27/91
LAST MODIFIED: 1/25/92

DESCRIPTION:

This is the module that controls outputting standard screen messages.
This will reduce the number of OUTPUT statements found in the dialog
sections of the scenarios.

PROCEDURE Screen(IN phrase : INTEGER);

BEGIN

CASE phrase
WHEN 1:
OUTPUT("Input the number of the option: ");
OUTPUT(" ");

WHEN 2:

OUTPUT(INPUT Y to make another menu selection or <return> to
continue");

WHEN 3:
OUTPUT('Strike the <return> key when the ship responds

correctly as follows: ");
OUTPUT(" ");

WHEN 4:
OUTPUT("Strike the <return> key when WHEN THE SHIP IS READY TO
COMMENCE THE EXCERCISE "1);

OUTPUT(" ");

WHEN 5:
OUTPUT('Strike the <return> key when WHEN READY TO CONTINUE");
OUTPUT(" );

WHEN 6:
OUTPUT("SPOTTER READS THE FOLLOWING INTO THE VOICE CIRCUIT:");
OUTPUT(" ");

WHEN 7:
OUTPUT("Input the new information or <return> to keep data the
same. ");
OUTPUT(" );

WHEN 8:

Lines(l);

144



OUTPUT("Hit the <return> key when the Spotter has read the
message. ");

Lines(2);

OTHERWISE
OUTPUT("BOGUS INPUT FOR PROCEDURE Screen in module StdScrn ");
OUTPUT( .. );

END CASE;

END PROCEDURE;

PROCEDURE Lines(IN numlines INTEGER);

BEGIN
CASE numlines
WHEN 1:

OUTPUT(C .);

WHEN 2:

OUTPUT( .. );

OUTPUT(" );

WHEN 3:

OUTPUT(" );

OUTPUT(. );
OUTPUT(" ');

WHEN 4:

OUTPUT( .. );

OUTPUT( .. );
OUTPUT( .. );

OUTPUT(" ");

WHEN 5:

OUTPUT(" );

OUTPUT( .. );

OUTPUT( .. );

OUTPUT( .. );

OUTPUT( .);

OTHERWISE
OUTPUT(" );
OUTPUT(" );

END CASE;
END PROCEDURE;

PROCEDURE Reminder(IN system : INTEGER);

BEGIN
CASE system

WHEN 1:
OUTPUT("41-09-45.0 as 410945.0 <DDMMSS.S>");

145



WHEN 2:
OUTPUT("41-09.75 as 4109.75 <DDM1.nm>');

OTHERWI SE

END CASE;
END PROCEDURE;

END MODULE.

146



DEFINITION MODULE TgtMkr;

MODULE NAME: TgtMkr
AUTHOR: LT. WARREN A. MAZANEC
DATE WRITTEN: 12/20/91
LAST MODIFIED: 2/15/92

DESCRIPTION:

This is the definition module that controls the creation of target
lists.

PROCEDURE CreateAreaTgt;
PROCEDURE CreatePointTgt;

END MODULE.

147



IMPLEMENTATION MODULE TgtMkr;

( -- ------------------------------------------------------------------

MODULE NAME: TgtMkr
AUTHOR: LT. WARREN A. MAZANEC
DATE WRITTEN: 12/20/91
LAST MODIFIED: 2/15/92

DESCRIPTION:

This is the definition module that controls the creation of target
lists.
--- ----------------------------------------------------------------

FROM Geo IMPORT sys, dlat, dlon, scale, DConvert, MapFamily;
FROM Global IMPORT TargetRecType;
FROM StdScrn IMPORT Reminder;
FROM IOMod IMPORT StreamObj, FileUseType(Output);

VAR

changeFlag,
areaFlag,
ptFlag,
shoreFlag STRING;

edit,
areactr,
ptctr,
shorectr,
i INTEGER;

tempptgt,ptgt,
atgt,tempatgt,
cbat,tempctgt,
firstpt,
firstarea,
firstcounter TargetRecType;

PtFile,
AFile : StreamObj;

outfile : STRING;

{***************** AREA TARGET POINTS ************************

PROCEDURE CreateAreaTgt;

BEGIN

OUTPUT;
OUTPUT;
OUTPUT("Do you wish to enter AREA Target points? <Y/N>");
INPUT(areaFlag);

148



areactr := 0;

IF (areaFlag = "Y") OR (areaFlag = "y")
changeFlag ="Y";

ELSE
changeFlag "N";

END IF;

NEW(atgt);
firstarea := atgt;
WHILE (areaFlag = "Y") OR (areaFlag = "y")

areactr := areactr +1;
OUTPUT;
OUTPUT;
OUTPUT("Input the Target's Alpha-Numeric Designation");
INPUT (atgt.tgtID);
OUTPUT;
OUTPUT("Input the Latitude of Area Target's center ",areactr," ");
Reminder (sys) ;
INPUT (atgt.lat);
atgt.y := ABS(DConvert(atgt.lat, sys) - dlat) * 120000.0;
OUTPUT("Input the Longitude of Area Target's center ",areactr,
if ,,) ;

Reminder (sys);
INPUT (atgt. lon);
atgt.x := ABS(DConvert(atgt.lon, sys) - dlon) * scale;
atgt.next := NILREC;

OUTPUT;
OUTPUT("Input Target Description - ie. Men In The Field");
INPUT (atgt.type);
OUTPUT;
OUTPUT("Input Target Protection OR <None>");
INPUT (atgt .protection);
OUTPUT;
OUTPUT ("Input the target width in yards");
INPUT (atgt .width);
OUTPUT;
OUTPUT("Input target length in yards");
INPUT(atgt.length);
OUTPUT;
OUTPUT ("Input target quantity");
INPUT (atgt .quantity);

OUTPUT("Another Area Target ? <Y/N>");
INPUT (areaFlag);

IF (areaFlag = "Y") OR (areaFlag = "y")
tempatgt := atgt;
NEW(atgt);
tempatgt.next := atgt;

END IF;

END WHILE;

WHILE (changeFlag = "Y") OR (changeFlag = "y)

149



OUTPUT;
OUTPUT;
OUTPUT ("You have input ", areactr, "Area Targets and they are as
follows:");
OUTPUT;
OUTPUT("Tgt no. lat ion");
i :=1;
atgt := firstarea;
WHILE i <= areactr
OUTPUT(- 11

1
j11 ",atgt.lat," ",atgt.lon," ", atgt.type," "

atgt.protection," ",atgt.width," ",atgt.length," "

atgt.quantity);
atgt :=atgt.next;

1 := 1+ 1
END WHILE;

OUTPUT;
OUTPUT;
OUTPUT("Would You like to Change An Area Target? <YIN>");
INPUT (changeFlag);
OUTPUT;

IF (changeFlag = "Y") OR (changeFlag = 1
OUTPUT;
OUTPUT;
OUTPUT("INPUT the number of the record you wish to edit");
INPUT (edit);
OUTPUT;

i := 1;
atgt :=firstarea;
WHILE i < edit

i := i + 1
atgt := atgt.next;

END WHILE;

OUTPUT(" 1',i," 11,atgt.lat," ",atgt.lon," "1,atgt.type,"
atgt.protection," "',atgt.width," ".atgt.length," "

atgt .quantity);
OUTPUT("Input the new Latitude )

Reminder(sys);
INPUT(atgt.lat);
OUTPUT("Input the new Longitude )
Reminder (sys) ;
INPUT (atgt.lon);
atgt.y :=ABS(DConvert(atgt.lat, sys) - diat) * 120000.0;
atgt.x ABS(DConvert(atgt.lon, sys) - dlon) * scale;
OUTPUT;
OUTPUT("Input Target Description - ie. Men In The Field");
INPUT(atgt.type);
OUTPUT;
OUTPUT("Input Target Protection OR <None>");
INPUT (atgt .protect ion);
OUTPUT;
OUTPUT("Input the target width in yards");

150



INPUT (atgt .width);
OUTPUT;
OUTPUT("Input target length in yards");
INPUT (atgt length);
OUTPUT;
OUTPUT("Input target quantity");
INPUT (atgt .quantity);

END IF;

END WHILE;

IF areactr > 0
OUTPUT("Here in creating map shore files");
outfile :=MapFamily + ".atgt";
OUTPUT("the outfile name is ", outfile);
NEW(AFile);
ASK AFile TO Open(outfile,Output);

ASK AFile TO Writelnt(areactr,4);
ASK AFile TO WriteLn;

i :- 0;
atgt := firstarea;

WHILE i < area'ctr

ASK AFile TO WriteString(atgt.tgtlD);
ASK AFile TO WriteLn;

ASK AFile TO WriteReal(atgt.x,12,6);
ASK AFile TO WriteLn;

ASK AFile TO WriteReal(atgt.y, 12, 6);
ASK AFile To WriteLn;

ASK AFile TO WriteReal (atgt.lat,12, 6);
ASK AFile TO WriteLn;

ASK AFile TO WriteReal(atgt.lon,12,6);
ASK AFile TO WriteLn;

ASK AFile TO WriteString(atgt.type);
ASK AFile TO WriteLn;

ASK AFile TO WriteString(atgt.protection);
ASK AFile TO WriteLn;

ASK AFile TO Writelnt(atgt.width,4);
ASK AFile TO WriteLn;

ASK AFile TO Writelnt(atgt.length,4);
ASK AFile TO WriteLn;

ASK AFile TO WriteString(atgt.quantity);
ASK AFile TO WriteLn;

151



atgt := atgt.next;
i := i +1;

END WHILE;

ASK AFile TO Close;
DISPOSE(AFile);

END IF;

END PROCEDURE;

{***************** POINT TARGET POINTS ***********************

PROCEDURE CreatePointTgt;

BEGIN

OUTPUT;
OUTPUT;
OUTPUT("Do you wish to enter POINT Target points? <Y/N>");
INPUT(ptFlag);
ptctr :- 0;

IF (ptFlag = "Y") OR (ptFlag = "y")
changeFlag "Y";

ELSE
changeFlag "N";

END IF;

NEW(ptgt);
firstpt := ptgt;
WHILE (ptFlag = "Y") OR (ptFlag = "y")

ptctr := ptctr +1;
OUTPUT;
OUTPUT;
OUTPUT("Input the Target's Alpha-Numeric Designation");
INPUT(ptgt.tgtID);
OUTPUT;
OUTPUT("Input the Latitude of Point Target's center ",ptctr," ");
Reminder(sys);
INPUT(ptgt.lat);
ptgt.y := ABS(DConvert(ptgt.lat, sys) - dlat) * 120000.0;
OUTPUT("Input the Longitude of Area Target's center ",ptctr," ");
Reminder(sys);
INPUT(ptgt.lon);
ptgt.x := ABS(DConvert(ptgt.lon, sys) - dlon) * scale;
ptgt.next := NILREC;

OUTPUT;
OUTPUT("Input Target Description - ie. Microwave Tower");
INPUT(ptgt.type);

OUTPUT;
OUTPUT("Input Target Protection OR <None>");
INPUT(ptgt.protection);

152



ptgt.width :1;

ptgt.length 1;
OUTPUT;
OUTPUT("Input target quantity");
INPUT (ptgt .quantity);

OUTPUT("Another Point Target ? <YIN>");
INPUT (ptFlag);

IF (ptFlag = 1"Y") OR (ptFlag = ""
tempptgt :=ptgt;
NEW (ptgt);
tempptgt.next :=ptgt;

END IF;

END WHILE;

WHILE (changeFlag = "Y") OR (changeFlag y =

OUTPUT;
OUTPUT;
OUTPUT("You have input ", ptctr, "Point Targets and they are as
follows:");
OUTPUT;
OUTPUT("Tgt no. lat ion");
i :=1;
ptgt :=firstpt;
WHILE i <= ptctr

ptgt.protection," ",ptgt.quantity);
ptgt .- ptgt.next;
i := i+ 1

END WHILE;

OUTPUT;
OUTPUT;
OUTPUT("Would You like to Change An Point Target? <YIN>");
INPUT (changeFlag);
OUTPUT;

IF (changeFlag = "1Y") OR (changeFlag y =

OUTPUT;
OUTPUT;
OUTPUT("INPUT the number of the record you wish to edit");
INPUT (edit);
OUTPUT;

i := 1;
ptgt := firstpt;
WHILE i < edit

i =i + 1
ptgt :- ptgt.next;

END WHILE;

ptgt.protection," "1,ptgt.quantity);

153



OUTPUT("'Input the new Latitude )

Reminder(sys);
INPUT (ptgt.lat);
OUTPUT("Input the new Longitude )

Reminder(sys);
INPUT(ptgt.lon);
ptgt.y ABS(DConvert(ptgt.lat, sys) - diat) * 120000.0;
ptgt.x ABS(DConvert(ptgt.lon, sys) - dion) * scale;
OUTPUT;
OUTPUT("Input Target Description - ie. Men In The Field");
INPUT(ptgt.type);
OUTPUT;
OUTPUT("'Input Target Protection OR <None>");
INPUT (ptgt .protect ion);
OUTPUT;
OUTPUT("Input target quantity");
INPUT (ptgt .quantity);

END IF;

END WHILE;

IF ptctr > 0
OUTPUT("Here in creating map shore files");
outfile :=MapFamily + ".ptgt";
OUTPUT("the outfile name is ", outfile);
NEW (PtFile) ;
ASK PtFile TO Open (outfile,Output);

ASK PtFile TO Writelnt(ptctr,4);
ASK PtFile TO WriteLn;

i -=0;
ptgt :=firstpt;

WHILE i < ptctr

ASK PtFile TO WriteString(ptgt.tgtlD);
ASK PtFile TO WriteLn;

ASK PtFile TO WriteReal(ptgt.x,12,6);
ASK PtFile TO WriteLn;

ASK PtFile TO WriteReal(ptgt.y,12,6);
ASK PtFile TO WriteLn;

ASK PtFile TO WriteReal (ptgt.lat, 12, 6);
ASK PtFile TO WriteLn;

ASK PtFile TO WriteReal (ptgt.lon, 12, 6);
ASK PtFile TO WriteLn;

ASK PtFile TO WriteString(ptgt.type);
ASK PtFile TO WriteLn;

ASK PtFile TO WriteString(ptgt.protection);

154



ASK PtFile To WriteLn;

ASK PtFile TO WriteString(ptgt .quantity);
ASK PtFile TO WriteLn;

ptgt := ptgt.next;
i := i +1;

END WHILE;

ASK PtFile TO Close;
DISPOSE (PtFile);

END IF;

END PROCEDURE;

END MODULE.

155



REFERENCES

1. Commander Naval Surface Force United States Atlantic Fleet Instruction
3570.2D, Training and Qualification of Ships in Naval Gunfire Support
(NGFS) and Shore Bombardment (Gunsmoke Manual) , 7 August 1989.

2. MODSIM II, The Language for Object-Oriented Programmin, Reference

Manual, CACI Products Comapny, 1991.

3. SIMGRAPHICS II Reference Manual, CACI Products Comapny, 1991.

4. Hobbs, R.R, Marine Navigation 1: Piloting, United States Naval Institute,
1977.

156



BIBLIOGRAPHY

Brantley, P., Fox, B. L., and Schrage, L. E., A Guide to Simulation, Second
Edition, Springer-Verlag, New York, Inc., 1987.

Gibson, E., "Objects-Born and Bred," Byte, v. 15, n. 10, pp. 245-254, October,

1990.

Hughes, W. P., Fleet Tactics, Naval Institute Press, 1986.

Naval Warfare Publication, Supporting Arms in Amphibious Operations,
NWP 22-2 (Rev. B).

Rice, J. A., Mathematical Statistics and Data Analysis, Wadsworth &
Brooks/Cole Advanced Books & Software, 1988.

Richardson, D., Naval Armament, Jane's Publishing Incorporated, 1982.

157



INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. LT Warren A. Mazanec 2
Submarine Officer Advance Course
Naval Submarine Base New London
Groton, CT 06349

4. Professor Michael P. Bailey, Code OR/Ba 5
Naval Postgraduate School
Monterey, CA 93943-5000

5. Professor Wayne P. Hughes, Code OR/HI 2
Naval Postgraduate School
Monterey, CA 93943-5000

6. LCDR Roger Stemp, Code OR/St 1
Naval Postgraduate School
Monterey, CA 93943-5000

7. John Bowden 1
Naval Weapons Support Center
Crane, IN 47522

8. Hal Duncan 1
CACI Products Company
3344 North Torrey Pines Court
La Jolla, CA 92037

9. CAPT Henry Bress 1
Naval Research Laboratory
4555 Overlook Ave., SW
Code 1505
Washington, DC 20375-5000

158


